Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Nanoscience and Technology: An International Journal
ESCI SJR: 0.228 SNIP: 0.484 CiteScore™: 0.37

ISSN Print: 2572-4258
ISSN Online: 2572-4266

Nanoscience and Technology: An International Journal

Formerly Known as Nanomechanics Science and Technology: An International Journal

DOI: 10.1615/NanoSciTechnolIntJ.2018029070
pages 79-87

ON ANTIPLANE DEFORMATIONS OF AN ELASTIC MATERIAL WITH RIGID FIBERS CONSIDERING SURFACE ENERGY AND NONPERFECT CONTACT

Daria Andreeva
Aberystwyth University, Ceredigion SY23 3BZ, Wales, UK
Wiktoria Miszuris
Aberystwyth University, Ceredigion SY23 3BZ, Wales, UK
Gennady Mishuris
Institute of Mathematics and Physics Aberystwyth University, Ceredigion SY23 3BZ, Wales, UK
Victor A. Eremeyev
Gdansk University of Technology, 80-233 Gdansk, Poland

ABSTRACT

Within the linear Gurtin–Murdoch model of surface elasticity we consider the antiplane deformations in an elastic matrix with a rigid cylindrical fiber influenced by external force. The influence of the surface elastic moduli on the stress distribution and adhesion force is analyzed.

REFERENCES

  1. Achenbach, J., Wave Propagation in Elastic Solids, Amsterdam: North Holland, 1973.

  2. Andreeva, D. and Miszuris, W., Nonlinear Transmission Conditions for Thin Curvilinear Low-Conductive Interphases, Continuum Mech. Thermodyn., vol. 29, no. 1, pp. 345-358, 2017.

  3. Andreeva, D. and Miszuris, W., Nonlinear Transmission Conditions for Thin Highly Conductive Interphases of Curvilinear Shape, J. Europ. Ceramic Soc., vol. 38, no. 8, pp. 3012-3019, 2018.

  4. Arroyo,M. and Belytschko, T., An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films, J. Mech. Phys. Solids, vol. 50, no. 9, pp. 1941-1977, 2002.

  5. Chatzigeorgiou, G., Javili, A., and Steinmann, P., Multiscale Modelling for Composites with Energetic Interfaces at the Micro- or Nanoscale, Math. Mech. Solids, vol. 20, no. 9, pp. 1130-1145, 2015.

  6. Duan, H.L.,Wang, J., and Karihaloo, B.L., Theory of Elasticity at the Nanoscale, Adv. Appl.Mech., vol. 42, Elsevier, pp. 1-68, 2008.

  7. Eremeyev, V.A., On Effective Properties of Materials at the Nano- and Microscales Considering Surface Effects, Acta Mechanica, vol. 227, no. 1, pp. 29-42, 2016.

  8. Eremeyev, V.A., Rosi,G., and Naili, S., Surface/Interfacial Anti-PlaneWaves in Solidswith Surface Energy, Mech. Res. Commun., vol. 74, pp. 8-13, 2016.

  9. Gurtin,M.E. andMurdoch,A.I., A ContinuumTheory of ElasticMaterial Surfaces, Archive RationalMech. Analysis, vol. 57, no. 4, pp. 291-323, 1975.

  10. Han, Z., Mogilevskaya, S.G., and Schillinger, D., Local Fields and Overall Transverse Properties of Unidirectional Composite Materials with Multiple Nanofibers and Steigmann-Ogden Interfaces, Int. J. Solids Structures, 2018.

  11. Huang, Z. and Wang, J., Micromechanics of Nanocomposites with Interface Energy Effect, in Handbook on Micromechanics and Nanomechanics, S. Li and X.L. Gao, Eds., Singapore: Pan Stanford Publishing, pp. 303-348, 2012.

  12. Javili, A., McBride, A., and Steinmann, P., Thermomechanics of Solids with Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review, Appl. Mech. Rev., vol. 65, pp. 010802-1-31, 2012.

  13. Kim, C.I., Schiavone, P., and Ru, C.Q., Analysis of a Mode-III Crack in the Presence of Surface Elasticity and a Prescribed Non-Uniform Surface Traction, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), vol. 61, no. 3, pp. 555-564, 2010a.

  14. Kim, C.I., Schiavone, P., and Ru, C.Q., The Effects of Surface Elasticity on an Elastic Solid with Mode-III Crack: Complete Solution, Trans. ASME, J. Appl. Mech., vol. 77, no. 2, p. 021011, 2010b.

  15. Kim, C.I., Schiavone, P., and Ru, C.Q., The Effect of Surface Elasticity on a Mode-III Interface Crack, Archives Mech., vol. 63, no. 3, pp. 267-286, 2011.

  16. Kushch, V.I., Chernobai, V.S., and Mishuris, G.S., Longitudinal Shear of a Composite with Elliptic Nanofibers: Local Stresses and Effective Stiffness, Int. J. Eng. Sci., vol. 84, pp. 79-94, 2014.

  17. Lurie, S., Volkov-Bogorodsky, D., Zubov, V., and Tuchkova, N., Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in ContinuumMechanics and Its Applications for Filled Nanocomposites, Compos. Mater. Sci., vol. 45, no. 3, pp. 709-714, 2009.

  18. Mishuris, G., Influence of Interfacial Models on a Stress Field near a Crack Terminating at a Bimaterial Interface, Int. J. Solids Struct., vol. 34, no. 1, pp. 31-46, 1997.

  19. Mishuris, G., Interface Crack and Nonideal Interface Concept (Mode III), Int. J. Fracture, vol. 107, no. 3, pp. 279-296, 2001.

  20. Mishuris, G., Imperfect Transmission Conditions for a ThinWeakly Compressible Interface. 2D Problems, Archives Mech., vol. 56, no. 2, pp. 103-115, 2004.

  21. Mishuris, G. and Kuhn, G., Asymptotic Behaviour of the Elastic Solution near the Tip of a Crack Situated at a Nonideal Interface, ZAMM, vol. 81, no. 12, pp. 811-826, 2001.

  22. Mishuris, G.S., Stress Singularity at a Crack Tip for Various Intermediate Zones in Bimaterial Structures (Mode III), Int. J. Solids Struct., vol. 36, no. 7, pp. 999-1015, 1999.

  23. Mishuris, G.S.,Movchan,N.V., andMovchan,A.B., Steady-StateMotion of aMode-III Crack on Imperfect Interfaces, Quart. J. Mech. Appl. Math., vol. 59, no. 4, pp. 487-516, 2006.

  24. Movchan, A.B. and Movchan, N.V., Mathematical Modelling of Solids with Nonregular Boundaries, Boca Raton, FL: CRC Press, 1995.

  25. Nase, M., Rennert, M., Naumenko, K., and Eremeyev, V.A., Identifying Traction-Separation Behavior of Self-Adhesive Polymeric Films from In Situ Digital Images under T-Peeling, J. Mech. Phys. Solids, vol. 91, pp. 40-55, 2016.

  26. Placidi, L., Rosi, G., Giorgio, I., and Madeo, A., Reflection and Transmission of Plane Waves at Surfaces Carrying Material Properties and Embedded in Second-GradientMaterials, Math. Mech. Solids, vol. 19, no. 5, pp. 555-578, 2014.

  27. Sfyris, D., Sfyris, G., and Galiotis, C., Curvature Dependent Surface Energy for a Free StandingMonolayer Graphene: Some Closed Form Solutions of the Non-Linear Theory, Int. J. Non-Linear Mech., vol. 67, pp. 186-197, 2014.

  28. Sonato, M., Piccolroaz, A., Miszuris, W., and Mishuris, G., General Transmission Conditions for Thin Elasto-Plastic Pressure-Dependent Interphase between Dissimilar Materials, Int. J. Solids Struct., vol. 64, pp. 9-21, 2015.

  29. Steigmann, D.J. and Ogden, R.W., Plane Deformations of Elastic Solids with Intrinsic Boundary Elasticity, Proc. Roy. Soc. A, vol. 453, no. 1959, pp. 853-877, 1997.

  30. Steigmann, D.J. and Ogden, R.W., Elastic Surface-Substrate Interactions, Proc. Roy. Soc. A, vol. 455, no. 1982, pp. 437-474, 1999.

  31. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., and Wang, T., Surface Stress Effect in Mechanics of Nanostructured Materials, Acta Mech. Solida Sinica, vol. 24, pp. 52-82, 2011.

  32. Wei, Y. and Hutchinson, J.W., Interface Strength, Work of Adhesion and Plasticity in the Peel Test, in Recent Advances in Fracture Mechanics, W. Knauss and R. Schapery, Eds., Netherlands: Springer, pp. 315-333, 1998.


Articles with similar content:

RADIAL VIBRATIONS OF THICK-WALLED HOLLOW POROELASTIC CYLINDERS
Journal of Porous Media, Vol.13, 2010, issue 4
M. Tajuddin, S. Ahmed Shah
A TOUCH SENSOR BASED ON A TENSORESISTIVE POLYMER
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.18, 2014, issue 1-2
Albert V. Novozhilov, Alexander G. Safonov, Dmitrii V. Andreev, Vladimir M. Maslowsky
EFFECT OF SURFACE TENSION FORCES ON CHANGES IN THE SURFACE RELIEF OF THE ELASTOMER NANOCOMPOSITE
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 1
A. L. Svistkov, Roman I. Izyumov
Microstructure-Based Multiscale Constitutive Modeling of γ — γ′ Nickel-Base Superalloys
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
David L. McDowell, A.-J. Wang, M. M. Shenoy, R. S. Kumar
Green's Function and Eshelby's Fields in Couple-Stress Elasticity
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Quanshui Zheng, Z.-H. Zhao