Library Subscription: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Published 4 issues per year

ISSN Print: 0731-8898

ISSN Online: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Biochemical Pathways Regulated by Algae to Mitigate Global Carbon Emissions: A Review

Volume 39, Issue 4, 2020, pp. 317-334
DOI: 10.1615/JEnvironPatholToxicolOncol.2020034921
Get accessGet access

ABSTRACT

Carbon dioxide (CO2), being an important greenhouse gas (GHG) significantly present in Earth's atmosphere, has been increasing because of several anthropogenic activities leading to global warming. Globally, various efforts have been made to confront climate change, and various CO2 capture and storage methods have been designed. This review aims at describing detailed studies about algae and the methods used by algae to capture and sequester carbon from the atmospheric environment. Algae exist in varied terrestrial and aqueous habitats. Under certain conditions, microalgae are potential accumulators of lipids, which act as a biofuel. Algal biofuel production promotes carbon sequestration and future energy production. This review explicates the opportunities and challenges for biological systems in CO2 sequestration by algae. In addition, the CO2 fixation by algae is explored and leading biochemical channels and enzymes involved in it are studied.

REFERENCES
  1. climate.ncsu.edu [Internet]. Composition of the atmosphere [cited 2020 Jul 18]. Available from: https://climate. ncsu.edu/edu/Composition.

  2. Wallace JM, Hobbs PV. Atmospheric science: An introductory survey. Elsevier; 2006. p. 504.

  3. esrl.noaa.gov [Internet]. Global Monitoring Laboratory-Carbon cycle greenhouse gases - trends in CO2. [cited 2020 Jul 18]. Available from: https://www.esrl.noaa.gov/ gmd/ccgg/trends/esrl.noaa.gov.

  4. Global Monitoring Laboratory. Carbon cycle greenhouse gases - trends in CH4. [cited 2020 Jul 18]. Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.

  5. Haynes WM. CRC handbook of chemistry and physics. 97th ed. Boca Raton, FL: CRC Press; 2016. p. 2652.

  6. Manabe S. Role of greenhouse gas in climate change. Tellus A: Dyn Meteorol Oceanog. 2019;71:1. doi: 10.1080/16000870.2019.1620078.

  7. Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner GK, Knutti R, Friedlingstein P. Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci. 2010 Oct 26; 107(43): 18354-9. doi: 10.1073/ pnas.1006282107.

  8. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin MM, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Climate change 2007: The physical science basis. Cambridge, UK: Cambridge University Press; 2007.

  9. Jaiswal A, VermaA, Jaiswal P. Detrimental effects ofheavy metals in soil, plants, and aquatic ecosystems and in humans. J Environ Pathol Toxicol Oncol. 2018;37(3):183-97. doi: 10.1615/JEnvironPatholToxicolOncol.2018025348.

  10. Le Quere C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf G, Ahlstrom A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC, Enright C, Friedling stein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Zeng N. The global carbon budget 1959-2011. Earth Syst Sci. 2013 May 8;5(1): 165-85. doi: 10.5194/essd-5-165-2013.

  11. Defra UK. The 2014 government greenhouse gas conversion factors for company reporting. London: UK Department for Environment; 2014.

  12. International Energy Agency (IEA). CO2 emissions from fuel combustion 2012. Washington, DC: IEA; 2012. doi: 10.1787/co2_fuel-2012-en.

  13. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR. Greenhouse-gas emission targets for limiting global warming to 2C. Nature. 2009 Apr 30;458(7242): 1158-62. doi: 10.1038/ nature08017.

  14. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. Beyond predictions: Biodiversity conservation in a changing climate. Science. 2011;332:53-8. doi: 10.1126/ science.1200303.

  15. Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhu- ber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA. A safe operating space for humanity. Nature. 2009 Sep 24;461(7263):472-5. doi: 10.1038/461472a.

  16. Frankson JR. UCL Lancet commission on managing the health effects of climate change: Food. Commonwealth Secretariat; 2009. p. 4.

  17. Ho SH, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technol. 2012;113:244- 52. doi: 10.1016/j.biortech.2011.11.133.

  18. Reichle D. Carbon sequestration: State of the science: A working paper for ropomapping future carbon sequestration R and D. Collingdale, Darby, PA: Diane Publishing; 2000.

  19. Mistry AN, Ganta U, Chakrabarty J, Dutta S. A review on biological systems for CO2 sequestration: Organisms and their pathways. Environ Prog Sustain Energy. 2019 Jan 5;38(1):127-36. doi: 10.1002/ep.12946.

  20. Sundquist E, Burruss R, Faulkner S, Gleason R, Harden J, Kharaka Y, Tieszen L, Waldrop M. Carbon sequestration to mitigate climate change (Fact Sheet 2008-3097) [Internet]. doi: 10.3133/fs20083097.

  21. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems. 2007;10:172-85. doi: 10.1007/ s10021-006-9013-8.

  22. Mistry AN, Ganta U, Singh S, Chakrabarty J, Bandyopadhyay G, Ghanta KC, Dutta S. Sequestration of CO2 using microorganisms and evaluation of their potential to synthesize biomolecules. Separation Sci Technol. 2020; 55: 32-45. doi: 10.1080/01496395.2019.1577453.

  23. Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V. Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technol Environ Policy. 2010 Jun 31;12(3):239-54. doi: 10.1007/ s10098-009-0215-6.

  24. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008 May;54(4):621-39. doi: 10.1111/j.1365-313X.2008.03492.x.

  25. Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, HK, Lin X, Liu Y, Wang Y, Martine, Blanca, Ruan R. Review of biological and engineering aspects of algae to fuels approach. Int J Agricult Biol Eng. 2009;2(4):1-30. doi: 10.3965/j. issn.1934-6344.2009.04.001-030.

  26. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol. 2013 Jan;128:359-64. doi: 10.1016/j.biortech.2012.10.119.

  27. Bhowmick GD, Subramanian G, Mishra S, Sen R. Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: A case study. Algal Res. 2014 0ct;6:201-9. doi: 10.1016/j.algal.2014.07.005.

  28. Ghorbani A, Rahimpour HR, Ghasemi Y, Zoughi S, Rahimpour MR. A review of carbon capture and se-questration in Iran: Microalgal biofixation potential in Iran. Renew Sustain Energy Rev. 2014;35:73-100. doi: 10.1016/j.rser.2014.03.013.

  29. Rahaman MSA, Cheng L-H, Xu X-H, Zhang L, Chen H-L. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sustain Energy Rev. 2011;15:4002-12. doi: 10.1016/j.rser.2011.07.031.

  30. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renew Sustain Energy Rev. 2012;16:3043-53. doi: 10.1016/j. rser.2012.02.055.

  31. Brilman W, Alba LG, Veneman R. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy. 2013;53:39-47. doi: 10.1016/j.biombioe.2013.02.042.

  32. Singh UB, Ahluwalia AS. Microalgae: A promising tool for carbon sequestration. Mitigation Adapt Strat Global Change. 2013;18:73-95. doi: 10.1007/ s11027-012-9393-3.

  33. Amoroso G, Sultemeyer D, Thyssen C, Fock HP. Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol. 1998 Jan 1;116(1):193-201. doi: 10.1104/pp.116.1.193.

  34. Jeong ML, Gillis JM, Hwang JY. Carbon dioxide mitigation by microalgal photosynthesis. Bull Korean Chem Soc. 2003;24(12): 1763-6. doi: 10.5012/bkcs.2003.24. 12.1763.

  35. Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M. Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour Technol. 2010 Jan;101(Suppl 1):S71-4. doi: 10.1016/j.biortech.2009.03.030.

  36. Ho S-H, Chen C-Y, Lee D-J, Chang J-S. Perspectives on microalgal C02-emission mitigation systems-a review. Biotechnol Adv. 2011 Mar;29(2):189-98. doi: 10.1016/j. biotechadv.2010.11.001.

  37. Driver T, Bajhaiya A, Pittman JK. Potential of bioenergy production from microalgae. Curr Renew Sustain Energy Rep. 2014 Sep 30;1(3):94-103. doi: 10.1007/ s40518-014-0011-8.

  38. Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010 Feb;14(2):557-77. doi: 10.1016/j. rser.2009.10.009.

  39. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 2010 Jan;101(Suppl 1):S75-7. doi: 10.1016/j.biortech.2009.03.058.

  40. Mata TM, Martins AA, Caetano NS. Microalgae for bio-diesel production and other applications: A review. Re-newable Sustainable Energy Rev. 2010 Jan;14(1):217-32. doi: 10.1016/j.rser.2009.07.020.

  41. Andruleviciute V, Makareviciene V, Skorupskaite V, Gumbyte M. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J Appl Phycol. 2014 Feb 24;26(1):83-90. doi: 10.1007/s10811-013-0048-x.

  42. Ullah K, Ahmad M, Sofia, Sharma VK, Lu P, Harvey A, Zafar M, Sultana S. Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel. 2015;143:414-23. doi: 10.1016/j.fuel.2014.10.064.

  43. Bhakta JN, Lahiri S, Pittman JK, Jana BB. Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae. J CO2 Utiliz. 2015;10:105-12. doi: 10.1016/j.jcou.2015.02.001.

  44. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008 Mar;26(3): 126-31. doi: 10.1016/j.tibtech.2007.12.002.

  45. Grima EM, Medina AR, Gimenez AG, Perez JAS, Camacho FG, Sanchez JLG. Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc. 1994;71:955-9. doi: 10.1007/bf02542261.

  46. Fajardo AR, Cerdan LE, Medina AR, Fernandez FGA, Moreno PAG, Grima EM. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol. 2007 Feb;109(2):120-6. doi: 10.1002/ejlt.200600216.

  47. Belarbi EH, Molina E, Chisti Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol. 2000 Apr 1;26(7):516-29. doi: 10.1016/ s0141-0229(99)00191-x.

  48. Batista AP, Ambrosano L, Graja S, Sousa C, Marques PASS, Ribeiro B, Botrel EP, Castro NP, Gouveia L. Combining urban wastewater treatment with biohydrogen production-an integrated microalgae-based approach. Bioresour Technol. 2015 May;184:230-5. doi: 10.1016/j. biortech.2014.10.064.

  49. Ferreira AF, Ortigueira J, Alves L, Gouveia L, Moura P, Silva C. Biohydrogen production from microalgal biomass: Energy requirement, CO2 emissions and scale-up scenarios. Bioresour Technol. 2013 Sep;144:156-64. doi: 10.1016/j.biortech.2013.06.079.

  50. Passos F, Uggetti E, Carrere H, Ferrer I. Pretreatment of microalgae to improve biogas production: A review. Bioresour Technol. 2014 Nov;172:403-12. doi: 10.1016/j. biortech.2014.08.114.

  51. Lively RP, Sharma P, McCool BA, Beaudry-Losique J, Luo D, Valerie TM, Realff M, Chance RR. Anthropogenic CO2 as a feedstock for the production of algal-based biofuels. Biofuels Bioprod Biorefin. 2015;9:72-81. doi: 10.1002/bbb.1505.

  52. Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Appl Energy. 2015;154:1062-71. doi: 10.1016/j.apenergy.2014.12.009.

  53. Zeng X, Danquah MK, Chen XD, Lu Y. Microalgae bioengineering: From CO2 fixation to biofuel production. Renew Sustain Energy Rev. 2011;15:3252-60. doi: 10.1016/j.rser.2011.04.014.

  54. Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y, Shi J, Meng J, Ruan Rr. Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energy Rev. 2014;36:256-69. doi: 10.1016/j.rser.2014.04.073.

  55. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Xavier MF, Langenhove HV. Enhanced CO(2) fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol. 2010;28:371-80. doi: 10.1016/j.tibtech.2010.04.004.

  56. Nayak M, Karemore A, Sen R. Performance evaluation of microalgae for concomitant wastewater bioremedia- tion, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res. 2016;16:216-23. doi: 10.1016/j.algal.2016.03.020.

  57. Meier RL. Biological cycles in the transformation of solar energy into useful fuels. In: Solar energy research. Madison, WI: University Wisconsin Press.

  58. Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: Strategies and progress based on carbon metabolism and energy conversion. Biotechnol Biofuels. 2018 Aug 20; 11:227. doi: 10.1186/s13068-018-1225-6.

  59. Masojidek J, Torzillo G, Kobhzek M. Photosynthesis in microalgae. In: Richmond A, Hu Q, editors. Handbook of microalgal culture. Oxford, UK: Wiley; 2013. doi: 10.1002/9781118567166.ch2.

  60. Staehelin LA. Chloroplast structure and supramolecular organization of photosynthetic membranes. Photosynthesis III. 1986;19:1-84. doi: 10.1007/978-3-642-70936-4_1.

  61. Francisco EC, Neves DB, Jacob-Lopes E, Franco TT. Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol. 2010 Jan 29;85(3):395-403. doi: 10.1002/jctb.2338.

  62. Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith RE. Photo synthetic pigments, nitrogen, chlorophyll A fluorescence and SPAD-502 readings in coffee leaves. Sci Hortic. 2005 Mar;104(2):199-209. doi: 10.1016/j. scienta.2004.08.013.

  63. Lima VA, Pacheco FV, Avelar RP, Alvarenga ICA, Pinto JEBP, Alvarenga AAD. Growth, photosynthetic pigments and production of essential oil oflong-pepper under different light conditions. AnAcad Bras Cienc. 2017 Apr;89(2):1167- 74. doi: 10.1590/0001-3765201720150770.

  64. Pilarski J, Kocurek M. The content of photosynthetic pigments and the light conditions in the fruits and leaves of sweet pepper. Acta Physiol Plant. 2005 Jun;27(2):173-82. doi: 10.1007/s11738-005-0021-7.

  65. Indriatmoko, Shioi Y, Brotosudarmo THP, Limantara L. Separation of photosynthetic pigments by high-performance liquid chromatography: Comparison of column performance, mobile phase, and temperature. Procedia Chem. 2015;14:202-10. doi: 10.1016/j.proche.2015.03.029.

  66. Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, Hoegh-Guldberg O, Devenish RJ, Rossjohn J. The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure. 2003 Mar;11(3):275-84. doi: 10.1016/S0969-2126(03)00028-5.

  67. Gangl D, Zedler JAZ, Rajakumar PD, Martinez EMR, Riseley A, Wlodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C. Biotechnological exploitation of microalgae. J Exp Bot. 2015 Dec;66(22):6975-90. doi: 10.1093/jxb/erv426.

  68. Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci. 2019 May;26(4):709-22. doi: 10.1016/j.sjbs.2017.11.003.

  69. Rockwell NC, Martin SS, Li F-W, Mathews S, Lagarias JC. The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. New Phytol. 2017 May;214(3):1145-57. doi: 10.1111/nph.14422.

  70. Osanai T, Park Y-I, Nakamura Y. Editorial: Biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. Front Microbiol. 2017 Feb 1;8:118. doi: 10.3389/fmicb.2017.00118.

  71. Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front Microbiol. 2017 Apr 25;8:515. doi: 10.3389/ fmicb.2017.00515.

  72. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720-31. doi: 10.1126/science.175.4023.720.

  73. Johnson MP. Photosynthesis. Essays Biochem. 2016 Oct 31;60(3):255-73. doi: 10.1042/EBC20160016.

  74. McMahon PB, Chapelle FH, Bradley PM. Evolution of redox processes in groundwater. In: Tratnyek PG, Grundl TJ, Haderlein SB, editors. Aquatic redox chemistry. Washington, DC: American Chemical Society; 2011.

  75. Cardona T, Shao S, Nixon PJ. Enhancing photosynthesis in plants: The light reactions. Essays Biochem. 2018 Apr 13;62(1):85-94. doi: 10.1042/EBC20170015.

  76. Leister D. Genetic engineering, synthetic biology and the light reactions of photosynthesis. Plant Physiol. 2019 Mar;179(3):778-93. doi: 10.1104/pp.18.00360.

  77. Hill R, Bendall F. Function of the two cytochrome components in chloroplasts: A working hypothesis. Nature. 1960;186:136-7. doi: 10.1038/186136a0.

  78. Gollan PJ, Tikkanen M, Aro E-M. Photosynthetic light reactions: Integral to chloroplast retrograde signalling. Curr Opin Plant Biol. 2015 Oct;27:180-91. doi: 10.1016/j. pbi.2015.07.006.

  79. Gan P, Liu F, Li R, Wang S, Luo J. Chloroplasts-beyond energy capture and carbon fixation: Tuning of photosyn-thesis in response to chilling stress. Int J Mol Sci. 2019 Oct 11;20(20). doi: 10.3390/ijms20205046.

  80. Singh J, Dhar DW. Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art. Front Mar Sci. 2019 Feb 5;6:1. doi: 10.3389/fmars.2019.00029.

  81. Grondelle RV, Boeker E. Limits on natural photosynthesis. J Phys Chem B. 2017 Aug 3;121(30):7229-34. doi: 10.1021/acs.jpcb.7b03024.

  82. Leister D. How can the light reactions of photosynthesis be improved in plants? Front Plant Sci. 2012 Aug 28;3:199. doi: 10.3389/fpls.2012.00199.

  83. Amerongen HV, Croce R. Light harvesting in photosystem II. Photosynth Res. 2013 Oct;116(2-3):251-63. doi: 10.1007/s11120-013-9824-3.

  84. Liu J, Lu Y, Hua W, Last RL. A new light on photosystem II maintenance in oxygenic photosynthesis. Front Plant Sci. 2019 Jul 31;10:975. doi: 10.3389/fpls.2019.00975.

  85. Bryant DA. The molecular biology of cyanobacteria. 1st ed. Amsterdam, the Netherlands: Springer; 1994.

  86. Jin H, Li M, Duan S, Fu M, Dong X, Liu B, Feng D, Wang J, Wang HB. Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiol. 2016 Nov;172(3):1720-31. doi: 10.1104/pp.16.00698.

  87. Mandal M, Kawashima K, Saito K, Ishikita H. Redox potential of the oxygen-evolving complex in the electron transfer cascade of photosystem II. J Phys Chem Lett. 2020 Jan 2;11(1):249-55. doi: 10.1021/acs.jpclett. 9b02831.

  88. Friedland N, Negi S, Vinogradova-Shah T, Wu G, Ma L, Flynn S, Kumssa T, Lee C-H, Sayre RT. Fine-tuning the photosynthetic light harvesting apparatus for improved photosynthetic efficiency and biomass yield. Sci Rep. 2019 Sep 10;9(1):13028. doi: 10.1038/s41598-019-49545-8.

  89. Umena Y, Kawakami K, Shen J-R, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature. 2011;473:55-60. doi: 10.1038/ nature09913.

  90. Pralon T, Shanmugabalaji V, Longoni P, Glauser G, Ksas B, Collombat J, Desmeules S, Havaux M, Finazzi G, Kessler F. Plastoquinone homoeostasis by Arabidopsis proton gradient regulation 6 is essential for photosynthetic efficiency. Commun Biol. 2019 Jun 20;2:220. doi: 10.1038/ s42003-019-0477-4.

  91. Suslichenko IS, Tikhonov AN. Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett. 2019 Apr;593(8):788-98. doi: 10.1002/1873-3468.13366.

  92. Gross EL. Plastocyanin: Structure, location, diffusion and electron transfer mechanisms. In: Oxygenic photosynthesis: The light reactions. Dordrecht, Netherlands: Springer; 1996.

  93. Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci. 2014;15(4):296-331. doi: 10.2174/138920371566614032 7102218.

  94. Gao J, Wang H, Yuan Q, Feng Y. Structure and function of the photosystem supercomplexes. Front Plant Sci. 2018 Mar 20;9:357. doi: 10.3389/fpls.2018.00357.

  95. Yamori W, Shikanai T, Makino A. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci Rep. 2015 Sep 11;5:13908. doi: 10.1038/ srep13908.

  96. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001;411:909-17. doi: 10.1038/35082000.

  97. Amunts A, Toporik H, Borovikova A, Nelson N. Structure determination and improved model of plant photosystem I. J Biol Chem. 2010 Jan 29;285(5):3478-86. doi: 10.1074/jbc.M109.072645.

  98. Busch A, Petersen J, Webber-Birungi MT, Powikrowska M, Lassen LMM, Naumann-Busch B, Nielsen AZ, Ye J, Boekema EJ, Jensen ON, Lunde C, Jensen PE. Composition and structure of photosystem I in the moss Physcomitrella patens. J Exp Bot. 2013 Jul 1;64(10):2689-99. doi: 10.1093/jxb/ert126.

  99. Boyer PD. A research journey with ATP synthase. J Biol Chem. 2002 Oct 18;277(42):39045-61. doi: 10.1074/jbc. X200001200.

  100. Buchanan BB. The carbon (formerly dark) reactions of photosynthesis. Photosynth Res. 2016 May;128(2):215-7. doi: 10.1007/s11120-015-0212-z.

  101. Rivetti F, Migliaccio M. Arts and entrepreneurship: Disen-tangling the literature. In: Brito SM, editor. Entrepreneurship-trends and challenges. London, UK: IntechOpen; 2018.

  102. Silva CS, Seider WD, Lior N. Exergy efficiency of plant photosynthesis. Chem Eng Sci. 2015 Jul;130:151-71.

  103. Evans JR. Improving photosynthesis. Plant Physiol. 2013 Aug;162(4):1780-93. doi: 10.1104/pp.113.219006.

  104. Cheng Y, He D, He J, Niu G, Gao R. Effect of light/dark cycle on photosynthetic pathway switching and CO2 absorption in two dendrobium species. Front Plant Sci. 2019 May 22;10:659. doi: 10.3389/fpls.2019.00659.

  105. Brautigam A, Gowik U. Photorespiration connects C3 and C4 photosynthesis. J Exp Bot. 2016 May;67(10):2953-62. doi: 10.1093/jxb/erw056.

  106. Bauwe H, Hagemann M, Kern R, Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol. 2012;15:269-75. doi: 10.1016/j.pbi.2012.01.008.

  107. Hagemann M, Weber APM, Eisenhut M. Photorespiration: Origins and metabolic integration in interacting compartments. EXBOTJ. 2016 May 14;67(10):2915-8. doi: 10.1093/jxb/erw178.

  108. Huang W, Hu H, Zhang S-B. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Front Plant Sci. 2015 Aug 11;6:621. doi: 10.3389/fpls.2015.00621.

  109. Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol. 2016 Dec;35:109-16. doi: 10.1016/j.cbpa.2016.09.014.

  110. Trudeau DL, Edlich-Muth C, Zarzycki J, Scheffen M, Goldsmith M, Khersonsky O, Avizemer Z, Fleishman SJ, Cotton CAR, Erb TJ, Tawfik DS, Bar-Even A. Design and in vitro realization of carbon-conserving photorespiration. Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11455-64. doi: 10.1073/pnas.1812605115.

  111. Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber Andreas PM, Westhoff P, Gowik U. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. Elife. 2014 Jun 16;3:e02478. doi: 10.7554/eLife.02478.

  112. Buapet P, Rasmusson LM, Gullstrom M, Bjork M. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS One. 2013 Dec 20;8(12):e83804. doi: 10.1371/journal.pone.0083804.

  113. Fulke AB, Chambhare KY, Sangolkar LN, Giripunje MD, Krishnamurthi K, Juwarkar AA, Chakrabarti T. Potential of wastewater grown algae for biodiesel production and CO2 sequestration. AJOL. 2013 May 15; 12(20):2939-48. doi: 10.5897/AJB13.12169.

  114. Jin H-F, Lim B-R, Lee K. Influence of nitrate feeding on carbon dioxide fixation by microalgae. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(12):2813-24. doi: 10.1080/10934520600967928.

  115. Ryu HJ, Oh KK, Kim YS. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J Indust Eng Chem. 2009 Jul 25;15(4):471-5.

  116. Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T. Effect of cultivation mode on microalgal growth and CO2 fixation. Chem Eng Res Design. 2011;89:1758-62. doi: 10.1016/j.cherd.2011.02.018.

  117. Fulke AB, Mudliar SN, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Saravana DS, Chakrabarti T. Biomitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour Technol. 2010;101:8473-6. doi: 10.1016/j. biortech.2010.06.012.

  118. Sydney EB, Sturm W, de Carvalho, JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010 Aug;101(15):5892-6. doi: 10.1016/j. biortech.2010.02.088.

  119. Yeh KL, Chang JS. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnol J. 2011 Nov;6(11):1358-66. doi: 10.1002/ biot.201000433.

  120. Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Lan- genhove H. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach. J Chem Technol Biotechnol. 2010;65:387-94. doi: 10.1002/ jctb.2332.

  121. Ho SH, Chen CY, Yeh KL, Chen WM, Lin CY, Chang JS. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochem Eng J. 2010;53:57-62. doi: 10.1016/j. bej.2010.09.006.

  122. Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102:3071-6. doi: 10.1016/j. biortech.2010.10.047.

  123. Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama SY, Yamaberi K. CO2 fixation and oil production using micro-algae. J Ferment Bioeng. 1994 Jan;78(6):479-82. doi: 10.1016/0922-338X(94)90052-3.

  124. Ho SH, Li PJ, Liu CC, Chang JS. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol. 2013;145:142-9. doi: 10.1016/j. biortech.2013.02.119.

  125. Morais MGD, Costa JAV. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus, and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett. 2007;29:1349-52. doi: 10.1007/s10529-007-9394-6.

  126. Huntley ME, Redalje DG. CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigat Adapt Strat Global Change. 2007;12:573-608. doi: 10.1007/s11027-006-7304-1.

  127. Morais MGD, Costa JAV Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conver Manage. 2007;48:2169-73. doi: 10.1016/j.enconman.2006.12.011.

  128. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Ian W. Progress in carbon dioxide separation and capture: A review. J Environ Sci. 2008;20(1):14-27. doi: 10.1016/ s1001-0742(08)60002-9.

  129. Metz B, Davidson O, Coninck HD, Loos M, Meyer L, editors. Carbon dioxide capture and storage-Report IPCC. Cambridge, UK: Cambridge University Press; 2005. pp 431.

  130. Intergovernmental Panel on Climate Change. Working Group III. Carbon dioxide capture and storage: Special report of the Intergovernmental Panel on climate change. Cambridge, UK: Cambridge University Press; 2005.

  131. Stepan DJ, Shockey RE, Moe TA, Dorn R. Carbon dioxide sequestering using microalgal systems. 2002. [Internet]. Available at https://www.osti.gov/ biblio/882000-St23VC/.

  132. Buesseler KO, Andrews JE, Pike SM, Charette MA. The effects of iron fertilization on carbon sequestration in the Southern Ocean. Science. 2004 Apr 16;304(5669):414-7. doi: 10.1126/science.1086895.

  133. Garoma T, Yazdi RE. Investigation of the disruption of algal biomass with chlorine. BMC Plant Biol. 2019 Jan 9;19(1):18. doi: 10.1186/s12870-018-1614-9.

  134. Khan MI, Shin JH, Kim JD. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018 Mar 5;17(1):36. doi: 10.1186/s12934-018-0879-x.

  135. Slade R, Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29-38. doi: 10.1016/j.biombioe.2012.12.019.

  136. Sayre RT, Pereira SL, inventors; PELIKAN HARDCOPY PRODUCTION AG, assignee. Molecular approaches for the optimization of biofuel production. United States Patent PCT/US2008/085597. 2009 Jun 11.

  137. Heilmann SM, Jader LR, Harned LA, Sadowsky MJ, Schendel FJ, Lefebvre PA, von Keitz MG, Valentas J. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy. 2011 Oct;88(10):3286-90. doi: 10.1016/j. apenergy .2010.12.041.

  138. Amonette J, Lehmann J, Joseph S. Terrestrial carbon sequestration with biochar: A preliminary assessment of its global potential. AGU Fall Meeting Abstracts; 2007:U42A-06.

  139. Amundson R, Biardeau L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11652-6. doi: 10.1073/ pnas.1815901115.

  140. Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. BioScience. 2010;60:685-96. doi: 10.1525/bio.2010.60.9.6.

  141. Paustian K, Larson E, Kent J, Marx E, Swan A. Soil C sequestration as a biological negative emission strategy. Front Clim. 2019 Oct 16;1:1244. doi: 10.3389/fclim.2019.00008.

  142. Lal R. Carbon sequestration. Phil Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):815-30. doi: 10.1098/ rstb.2007.2185.

  143. Stewart C, Hessami MA. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Convers Manage. 2005 Feb;46(3):403-20. doi: 10.1016/j. enconman.2004.03.009.

  144. Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9:165-77. doi: 10.1002/elsc.200900003.

  145. Wang W, Xiao S, Chao J, Chen Q, Qiu G, Liu X. Regulation of CO2 fixation gene expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n shock. J Microbiol Biotechnol. 2008 Nov; 18(11): 1747-54. doi: 10.4014/ jmb.0700.737.

  146. Yun YS, Lee SB, Park JM, Lee CI, Yang JW. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol. 1997;69:451-5. doi: 10.1002/(SICI)1097-4660(199708)69:4<451::AID- JCTB733>3.0.CO;2-M.

  147. Lopes EJ, Scoparo CHG, Franco TT. Rates of CO2 removal by Aphanothece microscopia Nageli in tubular photobioreactors. Chem Eng Process: Process Intensification. 2008;47:1365-73. doi: 10.1016/j.cep.2007.06.004.

  148. Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: Production and characterization. J Industr Microbiol Biotechnol. 2010;37:1271-87. doi: 10.1007/s10295-010-0884-5.

  149. Kadam KL. Power plant flue gas as a source of CO2 for microalgae cultivation: Economic impact of different process options. Energy Convers Manage. 1997 Jan;38:S505-10. doi: 10.1016/S0196-8904(96)00318-4.

  150. Kumar RR, Rao PH, Arumugam M. Lipid extraction methods from microalgae: A comprehensive review. Front Energy Res. 2015 Jan 8;2:457. doi: 10.3389/fenrg.2014.00061.

  151. Burton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB. A review of the potential of marine algae as a source of biofuel in Ireland. Glasnevin, Dublin, Ireland: Sustainable Energy Ireland; 2009.

  152. Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011 Jan;102(1): 101-5. doi: 10.1016/j. biortech.2010.06.016.

  153. Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol. 2010 Nov;101(22):8658-63. doi: 10.1016/j.biortech.2010.05.082.

  154. Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA. Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass Bioenergy. 2011;35:3865-76. doi: 10.1016/j.biombioe.2011.05.014.

CITED BY
  1. Tan Chunlin, Tao Fei, Xu Ping, Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories, Green Chemistry, 24, 11, 2022. Crossref

  2. John Jacob A, Mohammed Shahinsha N., Singh Kulwinder, Pant Ruby, Review on exhaust emissions of CI engine using ethanol as an alternative fuel, Materials Today: Proceedings, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain