Abonnement à la biblothèque: Guest
CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy
April 26 - May 1, 2009, Hammamet, Tunisia

DOI: 10.1615/ICHMT.2009.CONV


ISBN Print: 978-1-56700-261-4

ISSN Online: 2642-3499

ISSN Flash Drive: 2642-3502

CFD MODELING OF A SYNTHETIC JET ACTUATOR

page 16
DOI: 10.1615/ICHMT.2009.CONV.430
Get accessGet access

RÉSUMÉ

Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass −flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable k-ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain