Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

AN ESTIMATION OF TURBULENT SECONDARY FLOW RESISTANCE IN RECTANGULAR DUCTS FROM A FLOW MODEL

Volume 44, Numéro 5, 2017, pp. 375-385
DOI: 10.1615/InterJFluidMechRes.2017019117
Get accessGet access

RÉSUMÉ

Incompressible fluid flow in smooth rectangular ducts at working streamwise velocities is turbulent because of resistance of the four side-walls. A second feature of such flows is generation of secondary currents, though weak, in transverse cross sections. These secondary currents cause additional flow resistance, resulting in pressure drop in the direction of the primary flow. A number of experimental studies have been reported on the turbulence structure and consequent geometrical structures of the flow. In particular, the two diagonals and the pair of bisectors of the side walls divide a cross section into eight cells, in each of which vortical patches of motion take place. In this paper, it is shown that the vortical motion in a cell is kinematically analogous to the torsion problem of a prismatic isotropic elastic beam. Based on experimental results, the patch vortex in a cell is modeled to have elliptic shape with the major axis thrust toward a corner of the duct, giving a mathematical model of the flow field. Using the expressions for the transverse velocity components in the total momentum equation, with 1/pth power law where p ≈ 7 for the streamwise velocity, an equation is obtained between the side-wall resistance due to the secondary flow and the vorticity in each cell of division of the duct. Two particular cases are considered in numerical detail when the duct is square and when the height of the duct is one-half of the base length. For experimental validation of the side-wall resiatance formulae, additional experimental research is needed.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain