Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Dynamics of a Vortex in an Angular Region and within a Cross Groove

Volume 28, Numéro 1&2, 2001, pp. 185-195
DOI: 10.1615/InterJFluidMechRes.v28.i1-2.140
Get accessGet access

RÉSUMÉ

The paper deals with a numerical simulation of behaviour of two-dimensional stationary vortices in the near-wall flow that develops either in an angular region or within a cross groove. The model of ideal incompressible fluid is used. The complex potential of flow is determined by conformal transformation of physical area into the upper half-plane of auxiliary plane. The strength and coordinates of the stationary vortices were obtained against geometrical parameters that characterize the flow area. The stationary vortex was shown to have characteristic eigenfrequency. It corresponds to the frequency of the vortex precession about the stationary point under small departure of the vortex from its equilibrium. Due to eigenfrequency, both the stationary vortex and the local separation zone generated by that respond selectively on periodic perturbations of the free-stream velocity. These external disturbances cause departure of the vortex from its equilibrium. As a result, the vortex moves periodically along a closed trajectory of finite amplitude. Dependence of the amplitude of this motion on the frequency of external perturbations is resonant one. When the frequency of external perturbation is near the vortex eigenfrequency, the amplitude of the vortex motion increases abruptly that leads to intensification of mixing as well as to chaotization of motion in the local circulation zones generated by stationary vortices.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain