Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimer: 2152-5102
ISSN En ligne: 2152-5110

Volumes:
Volume 47, 2020 Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v33.i4.10
pages 303-319

Pressure Drop in Laminar and Turbulent Flows in Circular Pipe with Baffles − An Experimental and Analytical Study

Mushtak Al-Atabi
Mechanical Engineering Department, University of Sheffield, Sheffield S1 3JD, UK
Sulaiman Al-Zuhair
School of Chemical Engineering, Faculty of Engineering, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
S. B. Chin
Mechanical Engineering Department, University of Sheffield, Sheffield S1 3JD, UK
Xiao Yu Luo
Department of Mathematics, University of Glasgow, Glasgow, UK

RÉSUMÉ

Flow in a circular pipe fitted with segmental baffles may be treated as a shell-without-tube system. Its pressure drop has been calculated by adapting the Kern correlation [1] for pressure drop in the shell side of shell-and-tube heat exchangers. The Kern correlation is essentially based on the Hagen − Poiseuille equation for laminar flow, but flow visualization results presented here show that enhanced mixing and turbulence-like flow may be present at Reynolds numbers (based on the pipe diameter) as low as 50. A mathematical model, accounting for the effects of geometry of the baffle configurations, has been developed to predict the pressure drop in circular pipe fitted with segmental baffles. The model was solved algebraically for flow in pipe with three baffle arrangements and the results were validated by experimental data. The pressure drops thus calculated showed better agreement with experimental results than those predicted by the modified Kern model for Reynolds number in the range of 50 − 600.