Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Fluid Mechanics Research
ESCI SJR: 0.22 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimer: 2152-5102
ISSN En ligne: 2152-5110

Volumes:
Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2017019749
pages 513-531

NONLINEAR RADIATION EFFECT ON CASSON NANOFLUID PAST A PLATE IMMERSED IN DARCY–BRINKMAN POROUS MEDIUM WITH BINARY CHEMICAL REACTION AND ACTIVATION ENERGY

Aurang Zaib
Department of Mathematical Sciences, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Karachi-75300, Pakistan
M. M. Rashidi
Shanghai Automotive Wind Tunnel Center, Tongji University, 4800 Caoan Rd., Jiading, Shanghai 201804, China
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021
Ali F. Al-Mudhaf
Manufacturing Engineering Department, The Public Authority for Applied Education and Training, P. O. Box 42325, Shuweikh, 70654 Kuwait

RÉSUMÉ

Nonlinear thermal radiation near a stagnation point of Casson nanofluid over a plate in a Darcy–Brinkman porous medium is considered. Combined effects of binary chemical reaction with activation energy are taken into account. For activation energy and thermal radiation a modified Arrhenius function and different type of Rosseland approximation are used. Similarity transformation is invoked to transform the governing equations including momentum, energy, and concentration into a system of highly nonlinear ordinary differential equations and solved numerically using a shooting method. Graphical results are shown in order to scrutinize the behavior of pertinent parameters on velocity, temperature, and concentration of nanoparticle. Also, the behavior of fluid flow is investigated through the coefficient of skin friction, the Nusselt number, the Sherwood number, and streamlines. It is observed that the thickness of the concentration boundary layer increases due to activation energy and decreases due to reaction rate and temperature differences. Finally, a comparative analysis is made through previous studies in limiting case.


Articles with similar content:

NUMERICAL STUDY ON MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH VARIABLE PROPERTIES AND THERMOPHORESIS EFFECTS VIA LIE SCALING GROUP TRANSFORMATIONS
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 6
G. Venkata Suman, Janapatla Pranitha, D. Srinivasacharya
NANOFLUID FLOW OVER A NONLINEAR STRETCHING SHEET IN POROUS MEDIA WITH MHD AND VISCOUS DISSIPATION EFFECTS
Journal of Porous Media, Vol.17, 2014, issue 5
Precious Sibanda, Ahmed A. Khidir
FLOW OF NANOFLUID CONTAINING GYROTACTIC MICROORGANISMS OVER STATIC WEDGE IN DARCY-BRINKMAN POROUS MEDIUM WITH CONVECTIVE BOUNDARY CONDITION
Journal of Porous Media, Vol.21, 2018, issue 10
Mohammad Mehdi Rashidi, Aurang Zaib, Ali J. Chamkha
MHD COUETTE FLOW OF POWELL-EYRING FLUID IN AN INCLINED POROUS SPACE IN THE PRESENCE OF A TEMPERATURE-DEPENDENT HEAT SOURCE WITH CHEMICAL REACTION
Journal of Porous Media, Vol.20, 2017, issue 6
D. Lourdu Immaculate, R. Muthuraj, Suripeddi Srinivas
MIXED CONVECTION IN MHD MICROPOLAR FLUID WITH RADIATION AND CHEMICAL REACTION EFFECTS
Heat Transfer Research, Vol.45, 2014, issue 3
D. Srinivasacharya, M. Upendar