Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Medicinal Mushrooms
Facteur d'impact: 1.423 Facteur d'impact sur 5 ans: 1.525 SJR: 0.431 SNIP: 0.661 CiteScore™: 1.38

ISSN Imprimer: 1521-9437
ISSN En ligne: 1940-4344

Volumes:
Volume 21, 2019 Volume 20, 2018 Volume 19, 2017 Volume 18, 2016 Volume 17, 2015 Volume 16, 2014 Volume 15, 2013 Volume 14, 2012 Volume 13, 2011 Volume 12, 2010 Volume 11, 2009 Volume 10, 2008 Volume 9, 2007 Volume 8, 2006 Volume 7, 2005 Volume 6, 2004 Volume 5, 2003 Volume 4, 2002 Volume 3, 2001 Volume 2, 2000 Volume 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.v19.i1.20
pages 17-25

In Vitro and In Vivo Antidiabetic Evaluation of Selected Culinary-Medicinal Mushrooms (Agaricomycetes)

Varinder Singh
Chitkara College of Pharmacy, Chitkara University, Punjab, India
Gurleen Kaur Bedi
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
Richa Shri
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Punjab, India

RÉSUMÉ

Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.


Articles with similar content:

Antioxidant and Radiation Antagonistic Effect of Saraca indica
Journal of Environmental Pathology, Toxicology and Oncology, Vol.29, 2010, issue 1
P. Gayathri, P. R. Archana, Bola Sadashiva Satish Rao, Prerana Shetty, Nageshwar Rao
Evaluation of Carbohydrate Metabolism Inhibition by Some Species of Medicinal Mushrooms from India
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 4
Richa Shri, Gurpaul Singh Dhingra, Amandip Kaur
Antioxidant and Hepatoprotective Effects of Crataegus songarica Methanol Extract
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 2
Akbar Masood, Ovais Zargar, Mohammad Afzal Zargar, Showkat Ahmad Ganie, Shajrul Amin, Parvaiz Ahmad Dar, Shayaq Ul Abeer, Rabia Hamid, Tanveer Ali Dar, Bilal Zargar
Antimelanogenesis and Anti-Inflammatory Activity of Selected Culinary-Medicinal Mushrooms
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 2
Yee Shin Tan, Hazwani Mat Saad, Kae Shin Sim
Antimicrobial, Cytotoxic, Anti-Inflammatory, and Antioxidant Activity of Culinary Processed Shiitake Medicinal Mushroom (Lentinus edodes, Agaricomycetes) and Its Major Sulfur Sensory-Active Compound−Lenthionine
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 2
Iveta Stefanova, Roman Kubec, Pavel Hrouzek, Jan Hosek, Zuzana Plavcova, Kristyna Kupcova