Abonnement à la biblothèque: Guest
International Journal of Medicinal Mushrooms

Publication de 12  numéros par an

ISSN Imprimer: 1521-9437

ISSN En ligne: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Characterization of Anti−Salmonella typhi Compounds from Medicinal Mushroom Extracts from Zimbabwe

Volume 21, Numéro 7, 2019, pp. 713-724
DOI: 10.1615/IntJMedMushrooms.v21.i7.80
Get accessGet access

RÉSUMÉ

Antibiotic resistance has become a global concern and threatens the clinical efficacy of many drugs, leading to increased screening of several sources of potential antimicrobial substances. Mushrooms have long been recognized as a valuable source of nutritive and pharmacologically active compounds. Our previous studies showed that the acetone, ethanol, methanol, and cold water crude extracts of various mushrooms−Amanita and Cantharellus species, Ganoderma lucidum, and Lactarius kabansus−exhibited high antibacterial activity against Salmonella typhi. The objective of this study was to isolate, characterize, and identify antibacterial compounds from these crude mushroom extracts. The crude extracts were separated by preparative thin-layer chromatography. Fractions (n = 99) were obtained and screened for antimicrobial activity against S. typhi by using the MTT assay. Of the isolated components, 13 exhibited high inhibitory activity against the growth of S. typhi, with half-maximal inhibitory concentrations ranging from 206 to 619 µg/mL. Some of the highly potent antibacterial compounds were identified by using liquid chromatography−mass spectrometry. Terpenoids (lucidenic acid M and cavipetin D), a phospholipid (C16 sphinganine), and fatty acid amines (stearamide and palmitic amide) were some of the compounds found to be responsible for the antibacterial activity observed. The importance of local mushrooms as sources of antibacterial compounds was revealed. The high inhibitory activity of some mushroom extracts strongly suggests that the mushrooms contain compounds that have great potential for use in developing therapeutic agents against infections caused by S. typhi.

RÉFÉRENCES
  1. Turkoglu A, Duru ME, Mercan N. Antioxidant and antimicrobial activities of Laetiporus sulphurecis (Bull.) Murrill. Food Chem. 2007;101(1):267-73.

  2. Wong FC, Chai TT, Tan SL, Yong AL. Evaluation of bioactivities and phenolic content of selected edible mushrooms in Malaysia. Trop J Pharm Res. 2013;12(6):1011-6.

  3. Reardon S. Hidden African typhoid epidemic traced to drug-resistant bacteria: genetic analysis suggests that virulent strain of Salmonella typhi emerged in south Asia 25-30 years ago. Nature News. https://www.nature.com/news/hidden-african-ty- phoid-epidemic-traced-to-drug-resistant-bacteria-1.17514. Published May 11,2015.

  4. Topley JM. Mild typhoid fever. Arch Dis Child. 1986;61:164-7.

  5. Antillon M, Warren JL, Crawford FW, Weinberger DM, Kurum E, Pak GD, Marks F, Pitzer VE. The burden of typhoid fever in low- and middle-income countries: a meta-regression approach. PLoS Negl Trop Dis. 2017;11(2):e0005376.

  6. Rowe B, Ward LR, Threlfall EJ. Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis. 1997;24(1): 106-9.

  7. Polonsky JA, Martinez-Pino I, Nackers F, Chonzi P, Manangazira P, Van Herp M, Maes P, Porten K, Luquero FJ. Descriptive epidemiology of typhoid fever during an epidemic in Harare, Zimbabwe, 2012. PLoS One. 2014;9(12):e114702.

  8. Kozarski M, Klaus A, Vunduk J, Zizak Z, Niksic M, Jakovljevic D, Vrvic MM, Van Griensven LJLD. Nutraceutical properties of the methanolic extract of edible mushroom Cantharellus cibarius (Fries): primary mechanisms. Food Funct. 2015;6(6):1875-86.

  9. Wasser SP. Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1-16.

  10. Finimundy TC, Dillon AJP, Henriques JAP, Ely MR. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci. 2014;5(12):1095-105.

  11. Sakthivigneswari G, Dharmaraj K. Studies on analysis of few secondary metabolites and antimicrobial activity of Ganoderma lucidum. J Pharm Res. 2013;1(8):781-6.

  12. Gan CH, Narul AB, Asmah R. Antioxidant analysis of different types of edible mushrooms (Agaricus bisporus and Agaricus brasiliensis). Int Food Res J. 2013;20(3):1095-102.

  13. Durgo K, Koncar M, Komes D, Belscak-Cvitanovic A, Franekic J, Jakopovich I, Jakopovich N, Jakopovich B. Cytotoxicity of blended versus single medicinal mushroom extracts on human cancer cell lines: contribution of polyphenol and polysaccharide content. Int J Med Mushrooms. 2013;15(5):435-48.

  14. Adotey G, Quarcoo A, Holliday JC, Fofie S, Saaka B. Effect of immunomodulating and antiviral agent of medicinal mushrooms (immune assist 24/7) on CD4+ T-lymphocyte counts of HIV-infected patients. Int J Med Mushrooms. 2011;13(2): 109-13.

  15. Younis AM, Wu FS, Shikh HHE. Antimicrobial activity of extracts of the oyster culinary medicinal mushroom Pleurotus ostreatus (higher Basidiomycetes) and identification of a new antimicrobial compound. Int J Med Mushrooms. 2015;17(6):579-90.

  16. Keypour S, Riahi H, Moradali MF, Rafati H. Investigation of the antibacterial activity of a chloroform extract of ling zhi or reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetidae), from Iran. Int J Med Mushrooms. 2008;10(4):345-9.

  17. Geethangili M, Ra YK, Tzeng YN. Development and validation of HPLC-DAD separation method for determination of bioactive anthrocon medicinal mushroom Antrodia camphorate. Int J Appl Sci Eng. 2013;11(2):195-201.

  18. Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM. Isolation and characterization of lectin from the artist's conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes), and evaluation of its antiproliferative activity in HT-29 colon cancer cells. Int J Med Mushrooms. 2017;19(8):675-84.

  19. Elisashvili V Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms. 2012;14(3):211-39.

  20. Chang ST, Wasser SP. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;14:95-134.

  21. Chang ST, Wasser SP. Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (review). Int J Med Mushrooms. 2018;20(11):1034-48.

  22. Shen HS, Shao S, Chen JC, Zhou T. Antimicrobials from mushrooms for assuring food safety. Compr Rev Food Sci Food Safi 2017;16(2):316-29.

  23. Duru ME, Qayan GT. Biologically active terpenoids from mushroom origin: a review. Rec Nat Prod. 2015;9:456-83.

  24. Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, Barreiro MF, Gonzalez-Paramas AM, Ferreira IC. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, ant-tyrosinase, antioxidant, and antibacterial properties. Molecules. 2016;21(10). pii: E1372.

  25. Doughari JH. Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In: Rao V, ed. Phytochemicals: A global perspective of their role in nutrition and health. London: IntechOpen; 2012. https://www.intechopen.com/books/phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health.

  26. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Review: phytochemicals: extraction, isolation and identification of bioactive compounds from plant extracts. Plants. 2017;6:1-23.

  27. Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MR, Khelurkar VC. Phytochemicals: extraction methods, identification and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem. 2017;6:32-6.

  28. Boligon AA, Athayde ML. Importance of HPLC in analysis of plants extracts. Austin Chromatogr. 2014;1(3):2.

  29. Choma IM, Jesionek W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography. 2015;2:225-38.

  30. Buruleanu LC, Radulescu C, Georgescu AA, Danet FA, Olteany RL, Nicolescu CM, Dulama ID. Statistical characterization of the phytochemical characteristics of edible mushroom extract. Anal Lett. 2018;51:1039-59.

  31. Bharwaj A, Gupta P, Kumar N, Mishra J, Kumar A, Rakhee, Misra K. Lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agarocomycetes), inhibits Candida biofilms: a metabolomics approach. Int J Med Mushrooms. 2017;19(8):685-96.

  32. Robles AJ, Peng J, Hartley RM, Lee B, Mooberry SL. Melampodium leucanthum, a source of cytotoxic sesquiterpenes with antimitotic activities. J Nat Prod. 2015;78:388-95.

  33. Pyka A. Detection progress of selected drugs in TLC. Biomed Res Int. 2014;2014:732078.

  34. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1-10.

  35. Reid T, Kashangura C, Chidewe C, Benhura, MA, Mduluza T. Antibacterial properties of wild edible and non-edible mushrooms found in Zimbabwe. Afr J Microbiol Res. 2016;10:977-84.

  36. Sharp C. A pocket guide to mushrooms in Zimbabwe: Some common species. Bulawayo: Zimbabwe Directory Publishers; 2011.

  37. Sharp C. A pocket guide to mushrooms in Zimbabwe: Other common species. 2nd ed. Bulawayo: Zimbabwe Directory Publishers; 2014.

  38. Ryvarden L, Piearce GD, Masuka AJ. An introduction to the larger fungi of South Central Africa. Harare: Baobab Books; 1994.

  39. Gargano ML, van Griensven LJLD, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI. Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 2017;151(3):548-65.

  40. Chen XQ, Chen LX, Zhao J, Tang YP, Li SP Nortriterpenoids from the fruiting bodies of the mushroom Ganoderma resinaceum. Molecules. 2017;22(7). pii: E1073.

  41. Hsu CL, Yen GC. Ganoderic acid and lucidenic acid (triterpenoid). Enzymes. 2014;36:33-56.

  42. Shen JW, Ruan Y, Ma BJ. Diterpenoids of macromycetes. J Basic Microbiol. 2009;49:242-55.

  43. Velisek J, Cejpek K. Pigments of higher fungi: a review. Czech J Food Sci. 2011;29:87-102.

  44. Gewali MB. Aspects of traditional medicine in Nepal. Institute of Natural Medicine, University of Toyama, 2008.

  45. Ahmed S, Liu H, Ahmad A, Akraw W, Abdelrahman EKN, Ran F, Ou W, Dong S, Cai Q, Zhang Q, Li X, Hu S, Hu X. Characterization of anti-bacterial compounds from the seed coat of Chinese windmill palm tree (Trachycarpus fortunei). Front Microbiol. 2017;8:1894.

  46. Idan SA, Al-Marzoqi AH, Hameed IH. Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. Afr J Biotechnol. 2015;14:3131-58.

  47. Fischer CL, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertza PW. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother. 2012;56:1157-61.

CITÉ PAR
  1. Walvekar Shweta, Anwar Ayaz, Anwar Areeba, Yean Lai Nicole Jean, Yow Yoon-Yen, Khalid Mohammad, Siddiqui Ruqaiyyah, Khan Naveed Ahmed, Conjugation with Silver Nanoparticles Enhances Anti-Acanthamoebic Activity of Kappaphycus alvarezii, Journal of Parasitology, 107, 4, 2021. Crossref

  2. Sterniša Meta, Sabotič Jerica, Klančnik Anja, A novel approach using growth curve analysis to distinguish between antimicrobial and anti-biofilm activities against Salmonella, International Journal of Food Microbiology, 364, 2022. Crossref

  3. Ahmad Rizwan, Riaz Muhammad, Khan Aslam, Aljamea Ahmed, Algheryafi Mohammad, Sewaket Deya, Alqathama Aljawharah, Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties , Phytotherapy Research, 35, 11, 2021. Crossref

  4. Pang Jun-Rui, How Sher-Wei, Wong Kah-Hui, Lim Siew-Huah, Phang Siew-Moi, Yow Yoon-Yen, Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis, Fisheries and Aquatic Sciences, 25, 2, 2022. Crossref

  5. Hansen Philipp, von Bargen Kristine, Jünger-Leif Alexandra, Haas Albert, D’Orazio Sarah E. F., Laboratory Plasticware Induces Expression of a Bacterial Virulence Factor, mSphere, 2022. Crossref

3913 Vues d'articles 35 Téléchargements d'articles Métrique
3913 VUES 35 TÉLÉCHARGEMENTS 5 Crossref CITATIONS Google
Scholar
CITATIONS

Articles avec un contenu similaire:

Chemical Composition of Ethanolic Extracts of Some Wild Mushrooms from Tanzania and Their Medicinal Potentials International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 5
Athanasia Matemu, Baraka Luca Chelela, Musa Chacha
Chemical Characterization and Bioactive Properties of the Edible and Medicinal Honey Mushroom Armillaria mellea (Agaricomycetes) from Serbia International Journal of Medicinal Mushrooms, Vol.25, 2023, issue 4
Ivana Srbljak, Ana Đurić, Tomislav Tosti, Nevena Petrovic, Marijana Kosanic
The Health Promoting Effects of the Fruiting Bodies Extract of the Peppery Milk Cap Mushroom Lactarius piperatus (Agaricomycetes) from Serbia International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 4
Aleksandra Marković, Tatjana P. Stanojkovic, Olivera Milosevic-Djordjevic, Darko Grujičić, Nevena Petrović, Jovana Tubic, Marijana Kosanic
Antibacterial Activity of Wild Xylaria sp. Strain R005 (Ascomycetes) Against Multidrug-Resistant Staphylococcus aureus and Pseudomonas aeruginosa International Journal of Medicinal Mushrooms, Vol.14, 2012, issue 1
Annamalai Thalavaipandian, Veluchamy Ramesh, U. S. Ezhil Arivudainambi, Chandran Karunakaran, Ayyappan Rajendran
Chemical Composition and Bioctivity of the Giant Polypore or Black-Staining Mushroom, Meripilus giganteus (Agaricomycetes), from Serbia International Journal of Medicinal Mushrooms, Vol.24, 2022, issue 7
Ivana Srbljak, Ana Đurić, Tomislav Tosti, Nevena Petrovic, Marijana Kosanic
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain