Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Medicinal Mushrooms
Facteur d'impact: 1.423 Facteur d'impact sur 5 ans: 1.525 SJR: 0.431 SNIP: 0.661 CiteScore™: 1.38

ISSN Imprimer: 1521-9437
ISSN En ligne: 1940-4344

Volume 22, 2020 Volume 21, 2019 Volume 20, 2018 Volume 19, 2017 Volume 18, 2016 Volume 17, 2015 Volume 16, 2014 Volume 15, 2013 Volume 14, 2012 Volume 13, 2011 Volume 12, 2010 Volume 11, 2009 Volume 10, 2008 Volume 9, 2007 Volume 8, 2006 Volume 7, 2005 Volume 6, 2004 Volume 5, 2003 Volume 4, 2002 Volume 3, 2001 Volume 2, 2000 Volume 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019030681
pages 611-625

A Comparison of the Physical, Chemical, and Structural Properties of Wild and Commercial Strains of Button Mushroom, Agaricus bisporus (Agaricomycetes)

Muhammad Idrees
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China
Sanabil Yaqoob
College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, 130118, P.R. China
Sossah Frederick Leo
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China
Asif Ali Khan
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China
Lei Sun
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China
Yang Yang
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China
Dan Li
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China
Yongping Fu
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P. R. China
Yu Li
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, P.R. China


Agaricus bisporus is well known for its nutraceutical properties. To meet consumer market demand, there is an urgent need for new strains with disease resistance and a diverse nutrient profile for commercial cultivation. Wild germplasm resources provide a good source for the breeding of new strains for this purpose. In this study, we evaluated the physical, chemical, and structural properties of wild domesticated (CCMJ1351) and major commercially cultivated strains (CCMJ1013, CCMJ1028, and CCMJ1343) of A. bisporus from China. The results showed significant differences among the strains for all parameters measured. In terms of morphological characteristics, CCMJ1351 possessed the highest stipe thickness, fruiting body individual weight, cohesiveness, and springiness; CCMJ1013 demonstrated maximum pileus diameter and thickness; CCMJ1028 exhibited the highest textural hardness and color characteristics; and strain CCMJ1343 had the highest yield. CCMJ1351 ranked top among all the strains for proximate composition, rheological profile, and structural and mechanical properties, containing 21.93% crude protein and the highest dry matter, crude fat, and fiber contents. However, the bioactive chemical constituents present in the four strains were very similar, especially β-(1→3)-glucan, according to Fourier transform infrared spectroscopy analysis, while some minimal peaks varied among the different strains. Therefore, in combination with previously identified high disease-resistance traits, the wild domesticated strain CCMJ1351 constitutes a good candidate for further exploitation in breeding programs and is suitable for fresh consumption as well as incorporation into various food products.


  1. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Diego CZ, Pardo-Gimenez A, editors. Edible and medicinal mushrooms, technology and applications. West Sussex: Wiley Blackwell; 2017, p. 5-13.

  2. Tsai SY, Mau JL, Huang SJ. Enhancement of antioxidant properties and increase of content of vitamin D2 and non-volatile components in fresh button mushroom, Agaricus bisporus (Higher Basidiomycetes) by y-irradiation. Int J Med Mushrooms. 2014;16(2):137-47.

  3. Shnyreva AV, Song W, Van Griensven LJLD. Extracts of medicinal mushrooms Agaricus bisporus and Phellinus linteus induce proapoptotic effects in the human leukemia cell line K562. Int J Med Mushrooms. 2010;12(2):167-75.

  4. Amiri O, Miandare HK, Hoseinifar SH, Shabni A, Safari R. Skin mucus protein profile, immune parameters, immune-related gene expression, and growth performance of rainbow trout (Oncorhynchus mykiss) fed white button mushroom (Agaricus bisporus) powder. Int J Med Mushrooms. 2018;20(4):337-47.

  5. Petrova RD, Wasser SP, Mahajna JA, Denchev CM, Nevo E. Potential role of medicinal mushrooms in breast cancer treatment: current knowledge and future perspectives. Int J Med Mushrooms. 2005;7(1-2):141-6.

  6. Fu Y, Wang X, Li D, Liu Y, Song B, Zhang C, Li Y. Identification of resistance to wet bubble disease and genetic diversity in wild and cultivated strains of Agaricus bisporus. Int J Mol Sci. 2016;17(10):1568.

  7. Mata G, Estrada AR. Studies on laccase and biomass production in vitro and culture by Mexican wild strain of Agaricus bisporus (J.Lange) Imbach: a comparison with commercial strains. Int J Med Mushrooms. 2005;7(3):431-32.

  8. Sonnenberg AS, Baars JJP, Gao W, Visser RGF. Developments in breeding of Agaricus bisporus var. bisporus: progress made and technical and legal hurdles to take. Appl Microbiol Biotechnol. 2017;101(5): 1819-29.

  9. Alcantara C, Kuemmerle T, Baumann M, Bragina EV, Griffiths P, Hostert P, Knorn J, Muller D, Prishchepov AV, Schierhorn F, Sieber A, Radeloff, VC. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ Res Lett. 2013;8(3):35035.

  10. Corey ME, Beelman RB, Seetharman K. Potential for nutritional enrichment of whole-wheat bread with Portabella mushroom powder (Agaricus bisporus (J. Lge) Imbach, Agaricomycetidae). Int J Med Mushrooms. 2009;11(2):157-66.

  11. Zheng SL. Cultivation performance and techniques of new A. bisporus variety W192. Fujian Science and Technology of Rice and Wheat. 2017;35(3):77-78 [in Chinese].

  12. Garcha HS. A manual of mushroom growing PAU. Ludhiana. J Plant Res Envir. 1994;14(1):3-5.

  13. Mohini PS, Sabheet K, Sodhi HS. Evaluation of Agaricus bisporus Lange (Sing.) strains in the plains of Punjab. Int J Curr Microbiol App Sci. 2017;6(12):3417-25.

  14. Mohapatra D, Bira ZM, Kerry JP, Frias JM, Rodrigues FA. Postharvest hardness and color evolution of white button mushrooms (Agaricus bisporus). J Food Sci. 2010;75(3):146-52.

  15. Gao M, Feng L, Jiang T. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem. 2014;149(8):107-13.

  16. Manolopoulou E, Philippoussis A, Lambrinos G, Diamantopoulou P. Evaluation of productivity and postharvest quality during storage of five Agaricus bisporus strains. J Food Qual. 2007;30(5):646-63.

  17. Nasiri F, Ghiassi TB, Bassiri AR, Hoseini SE, Aminafshar M. Comparative study on the main chemical composition of button mushroom's (Agaricus bisporus) cap and stipe. J Food Biosci Technol. 2013;3:41-48.

  18. Association of Analytical Communities. Official methods of analysis. 17th ed. Gaithersburg (MD): AOAC; 2000.

  19. Yuan B, Zhao L, Yang W, McClements DJ, Hu Q. Enrichment of bread with nutraceutical rich mushrooms: impact of Auricularia auricula (mushroom) flour upon quality attributes of wheat dough and bread. J Food Sci. 2017;82(9):2041-50.

  20. Garip S, Gozen AC, Severcan F. Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem. 2009;113(4):1301-7.

  21. Demirer T, Rock-okuyucu B, Ozer I. Effect of different types and doses of nitrogen fertilizers on yield and quality characteristics of mushroom (Agaricus bisporus (Lange) Sing.) cultivated on wheat straw compost. J Agr Rural Dev Trop. 2005;106(1):71-77.

  22. Ghanbari J, Pourianfar HR, SarmadNabavi M, MostafaviMendi E. A comparative study of agronomic characteristics in several Iranian wild isolates of the button mushroom, Agaricus bisporus. Int J Adv Res. 2015;3(2):230-35.

  23. Singh P, Langowski HC, Wani AA, Saengerlaub S. Recent advances in extending the shelf life of fresh Agaricus mushrooms: a review. J Sci Food Agric. 2010;90(9):1393-1402.

  24. Lee BJ, Lee MA, Kim YG, Jee KW, Lee BE, Song HY. Varietal characteristics of new white button mushroom 'Seolwon' in Agaricus biporus. J Mushrooms. 2014;12(2):82-87.

  25. Wang XY, Tan JC, Wang J. Effect of precooling temperature on physiological quality of cold stored Agaricus bisporus. Int J Agric Biol Eng. 2014;7(2):108-14.

  26. Galqzka-Czarnecka I, Krala L. Wplyw blanszowania na jakosc mrozonych pieczarek Agaricus bisporus Sing. The influence of blanching on white mushrooms Agricus bisporus Sing. quality. Chlodnictwo. 2009;44(6):56-59 [in Polish].

  27. Bernas E, Jaworska G, Kmiecik W. Storage and processing of edible mushrooms. Acta Sci Pol Technol Aliment. 2006;5(2):5-23.

  28. Damiecka J, Szudyga K.. Jakosc owocnikow pieczarki dla przetworstwa a sposob uprawy Quality of mushroom (Agaricus bisporus) fruit bodies for processing and the way of its cultivation. Przem Spoz. 2006;12:38-40 [in Polish].

  29. Kumar V, Suman BC. Molecular characterization of Agaricus bisporus strains and their evaluation for production efficiency. Indian Phytopath. 2015;67(4):412-17.

  30. Briones GL, Varoquaux P, Chambroy Y, Bouquant J, Bureau G, Pascat B. Storage of common mushroom under controlled atmospheres. Int J Food Sci Technol. 1992;27(5):493-505.

  31. Mattila P, Salo-Vaananen P, Konko K, Aro H, Jalava T. Basic composition and amino acid contents of mushrooms cultivated in Finland. J Agric Food Chem. 2002;50(22):6419-22.

  32. Kurtzman Jr RH. Nutrition from mushrooms, understanding and reconciling available data. Mycoscience. 1997;38(2):247- 53.

  33. Cheung PCK. Dietary fibre content and composition of some edible fungi determined by two methods of analysis. J Sci Food Agric. 1997;73(2):255-60.

  34. Li BB, Jiang SP, Xu AG, Wang WJ, Wang XL, Wei TZ, Zhang ZT, Yao YJ. New germplasms of the culinary-medicinal button mushroom, Agaricus bisporus (Agaricomycetes): two wild strains from the Tibetan Plateau (China). Int J Med Mushrooms. 2017;19(2):145-54.

  35. Ragaee S, Abdel-Aal ESM. Pasting properties of starch and protein in selected cereals and quality of their food products. Food Chem. 2006;95(1):9-18.

  36. Sharma P, Gujral HS. Anti-staling effects of P-glucan and barley flour in wheat flour chapatti. Food Chem. 2014;145C:102-8.

  37. Lockwood S, King JM, Labonte DR. Altering pasting characteristics of sweet potato starches through amino acid additives. J Food Sci. 2008;73(5):5.

  38. Shah A, Masoodi FA, Gani A, Ashwar BA. Geometrical, functional, thermal, and structural properties of oat varieties from temperate region of India. J Food Sci Technol. 2016;53(4):1856-66.

  39. Torbica A, Hadnadev M, Dapcevic T. Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocoll. 2010;24(6-7):626-32.

  40. O'Gorman A, Downey G, Gowen AA, Barry-Ryan C, Frias JM. Use of Fourier transform infrared spectroscopy and chemo-metric data analysis to evaluate damage and age in mushrooms (Agaricus bisporus) grown in Ireland. J Agric Food Chem. 2010;58(13):7770-76.

  41. Yao S, Li T, Liu H, Li J, Wang Y. Traceability of Boletaceae mushrooms using data fusion of UV-visible and FTIR combined with chemometrics methods. J Sci Food Agric. 2018;98(6):2215-22.

  42. Mohacek-Grosev V, Bozac R, Puppels GJ. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim Acta A. 2001;57(14):2815-29.

  43. Cebin AV, Tominac VP, Djakovic S, Srecec S, Krpan VZ, Zegarac JP. Polysaccharides and antioxidants from culinary-medicinal white button mushroom, Agaricus bisporus (Agaricomycetes), waste biomass. Int J M Mushrooms. 2018;20(8):797-808.

  44. Di Mario F, Rapana P, Tomati U, Galli E. Chitin and chitosan from Basidiomycetes. Int J Biol Macromol. 2008;43(1):8-12.

  45. Workman J. Methods and interpretations. In: Workman J, editor. Handbook of organic compounds. London: Academic; 2001, p. 209-42.

  46. Akram K, Ahn JJ, Kwon JH. Identification and characterization of gamma irradiated dried Lentinus edodes using ESR, SEM, and FTIR analyses. J Food Sci. 2012;77(6):C690-96.

  47. Amir RM, Anjum FM, Khan MI, Khan MR, Pasha I, Nadeem M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J Food Sci Tech. 2011;50(5):1018-23.

  48. Sureshkumar P, Thomas J, Sivasubramanian J. Rapid method for simultaneous discrimination of microalgae and determination on biochemical composition based on vibrational spectroscopy. Int J Algae. 2017;19(4):385-86.

  49. Dowell FE, Maghirang EB, Xie F, Lookhart GL, Pierce RO, Seabourn BW, Bean SR, Wilson JD, Chung OK. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chem. 2006;83(5):529-36.