Abonnement à la biblothèque: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Publication de 6  numéros par an

ISSN Imprimer: 1045-4403

ISSN En ligne: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Interfering with Nuclear Transport as a Means of Interrupting Transcription Factor Activity in Cancer

Volume 29, Numéro 5, 2019, pp. 413-424
DOI: 10.1615/CritRevEukaryotGeneExpr.2019026309
Get accessGet access

RÉSUMÉ

Transcription factors control numerous cellular processes, including proliferation, apoptosis, differentiation, and inflammation. Abnormal transcription factor activity has been implicated in a variety of diseases, especially cancer. The correct subcellular localization of transcription factors determines their activation status, implicating the nuclear transport receptors as key players in regulating transcription factor function. Dysregulation of the nuclear transport machinery has been described in numerous cancer types. This review summarizes how altered nuclear transport activity affects transcription factor localization and activity, and contributes to cancer development. Furthermore, the potential of targeting nuclear transporters for cancer therapy is discussed.

RÉFÉRENCES
  1. Adcock IM, Caramori G. Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol. 2001;79:376-84.

  2. Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1(1):53-65.

  3. Turpin P, Ossareh-Nazari B, Dargemont C. Nuclear transport and transcriptional regulation. FEBS Lett. 1999;452:82-6.

  4. Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev. 2001;65(4):570-94.

  5. Stelma T, Chi A, Van Der Watt PJ, Verrico A, Lavia P, Leaner VD. Targeting nuclear transporters in cancer: diagnostic, prognostic and therapeutic potential. IUBMB Life. 2016;68(4):268-80.

  6. Nakielny S, Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell. 1999;99(7):677-90.

  7. Kau TR, Way JC, Silver PA. Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer. 2004;4:106-17.

  8. Pemberton LF, Paschal BM. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic. 2005;6(3):187-98.

  9. He S, Miao X, Wu Y, Zhu X, Miao X, Yin H, He Y, Li C, Liu Y, Lu X, Chen Y, Wang Y, Xu X. Upregulation of nuclear transporter, KpnBl, contribute to accelerated cell proliferation and cell adhesion-mediated drug resistance (CAM-DR) in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol. 2015;142(3):562-72.

  10. Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol. 2004;14(9):505-14.

  11. van der Watt PJ, Ngarande E, Leaner VD. Overexpression of KpnBl and Kpna2 importin proteins in cancer derives from deregulated E2F activity. PLoS One. 2011;6(11):1-10.

  12. van der Watt P, Stowell C, Leaner V. The nuclear import receptor KpnBl and its potential as an anti-cancer therapeutic target. Crit Rev Eukaryot Gene Expr. 2013;23(1):1-24.

  13. Cautain B, Hill R, De Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J. 2015;282(3):445-62.

  14. Moroianu J. Distinct nuclear import and export pathways mediated by members of the karyopherin B family. J Cell Biochem. 1998;70(2):231-9.

  15. Moroianu J. Nuclear import and export pathways. J Cell Biochem. 1999;(Suppl 32-3):76-83.

  16. Wagstaff KM, Jans DA. Importins and beyond: non-con-ventional nuclear transport mechanisms. Traffic. 2009;10:1188-98.

  17. Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000;14:2551-69.

  18. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Javed A, Montecino M, Zaidi SK, Young DW, Choi JY, Pratap J. Combinatorial organization of the transcriptional regulatory machinery in biological control and cancer. Adv Enzyme Regul. 2005;45:136-54.

  19. Newman J, Young R. Connecting transcriptional control to chromosome structure and human disease. Cold Spring Harb Symp Quant Biol. 2010;LXXV:227-36.

  20. Kathiriya IS, Nora EP, Bruneau BG. Investigating the transcriptional control of cardiovascular development. Circ Res. 2015;116(4):700-14.

  21. Ahsendorf T, Muller F, Topkar V, Gunawardena J, Eils R. Transcription factors, coregulators, and epigenetic marks are linearly correlated and highly redundant. PLoS One. 2017;12(12):1-25.

  22. Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: time to deliver. J Control Release. 2018;269: 24-35.

  23. Emery JG, Ohlstein EH, Jaye M. Therapeutic modulation of transcription factor activity. Trends Pharmacol Sci. 2001;22(5):233-40.

  24. Lee SJ, Imamoto N, Sakai H, Nakagawa A, Kose S, Koike M, Yamamoto M, Kumasaka T, Yoneda Y, Tsukihara T. The adoption of a twisted structure of importin-beta is essential for the protein-protein interaction required for nuclear transport. J Mol Biol. 2000;302(1):251-64.

  25. Azmi AS. Unveiling the role of nuclear transport in epithelial-to-mesenchymal transition. Curr Cancer Drugs Targets. 2013;13:906-14.

  26. Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 2007;17(4):193-201.

  27. Parikh K, Cang S, Sekhri A, Liu D. Selective inhibitors of nuclear export (SINE)-a novel class of anti-cancer agents. J Hematol Oncol. 2014;7(78):1-8.

  28. Sun Q, Chen X, Zhou Q, Burstein E, Yang S, Jia D. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Target Ther. 2016;1:1-10.

  29. Yuh MC, Blobel G. Karyopherins and nuclear import. Curr Opin Struct Biol. 2001;11(6):703-15.

  30. Stelma T, Leaner VD. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget. 2017;8(20):32833-47.

  31. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin a. J Biol Chem. 2007;282(8):5101-5.

  32. Pumroy RA, Cingolani G. Diversification of importin-a isoforms in cellular trafficking and disease states. Biochem J. 2015;466(1):13-28.

  33. Marfori M, Mynott A, Ellis JJ, Mehdi AM, Saunders NFW, Curmi PM, Forwood JK, Boden M, Kobe B. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta-Mol Cell Res. 2011;1813:1562-77.

  34. Komeili A, O'Shea EK. Nuclear transport and transcription. Curr Opin Cell Biol. 2000;12(3):355-60.

  35. Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K, Heald R. Importazole, a small molecule inhibitor of the transport receptor importin-B. ACS Chem Biol. 2011;6(7):700-8.

  36. Liang P, Zhang H, Wang G, Li S, Cong S, Luo Y, Zhang B. KPNB1, XPO7 and IPO8 mediate the translocation of NF-kB/p65 into the nucleus. Traffic. 2013;14(11):1132-43.

  37. Forwood JK, Lam MH, Jans DA. Nuclear import of Creb and AP-1 transcription factors requires importin-beta 1 and Ran but is independent of importin-alpha. Biochemistry. 2001;40(17):5208-17.

  38. Cimica V, Chen HC, Iyer JK, Reich NC. Dynamics of the STAT3 transcription factor: nuclear import dependent on ran and importin-B1. PLoS One. 2011;6(5):1-11.

  39. Yasuhara N, Shibazaki N, Tanaka S, Nagai M, Kamikawa Y, Oe S, Asally M, Kamachi Y, Kondoh H, Yoneda Y. Triggering neural differentiation of ES cells by subtype switching of importin-a. Nature. 2007;9(1):72-9.

  40. Muqbil I, Wu J, Aboukameel A, Mohammad RM, Azmi AS. Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition? Semin Cancer Biol. 2014;27:1-15.

  41. Aggarwal A, Agrawal DK. Importins and exportins regulating allergic immune responses. Mediators Inflamm. 2014;2014:1-14.

  42. Waldmann I, Walde S, Kehlenbach RH. Nuclear import of c-Jun is mediated by multiple transport receptors. J Biol Chem. 2007;282(38):27685-92.

  43. Gontan C, Guttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, Tibboel D, Gorlich D, Poot RA, Rottier RJ. Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J Cell Biol. 2009;185(1):27-34.

  44. Wang X, Li S. Protein mislocalization: mechanisms, func-tions and clinical applications in cancer. Biochim Biophys Acta. 2014;1846(1):1-31.

  45. Chen H, Reich NC. Live cell imaging reveals continuous STAT6 nuclear trafficking. J Immunol. 2010;185(1):64-70.

  46. Liu L, Mcbride KM, Reich NC. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-a3. PNAS. 2005;102(23):8150-5.

  47. Ma J, Cao X. Regulation of Stat3 nuclear import by importin a 5 and importin a 7 via two different functional sequence elements. Cell Signal. 2006;18:1117-26.

  48. Otis KO, Thompson KR, Martin KC. Importin-mediated nuclear transport in neurons. Curr Opin Neurobiol. 2006;16:329-35.

  49. Ishizawa J, Kojima K, Hail N, Tabe Y, Andreeff M. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein. Pharmacol Ther. 2015;153:25-35.

  50. Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin C, Moustakas A. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol. 2006;26(4):1318-32.

  51. Kuusisto HV, Wagstaff KM, Alvisi G, Roth DM, Jans DA. Global enhancement of nuclear localization-dependent nuclear transport in transformed cells. FASEB J. 2012;26:1181-93.

  52. Van Der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L, Govender D, Birrer MJ, Leaner VD. The karyopherin proteins, Crm1 and Karyopherin B1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer. 2009;124:1829-40.

  53. Kodama M, Kodama T, Newberg JY, Katayama H, Kobayashi M, Hanash SM, Yoshihara K, Wei Z, Tien JC, Rangel R, Hashimoto K, Mabuchi S, Sawada K, Kimura T, Copeland NG, Jenkins NA. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. PNAS. 2017;114(35):1-10.

  54. Zhu Z-C, Liu J-W, Li K, Zheng J, Xiong Z-Q. KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene. 2018;1-17.

  55. Hill R, Cautain B, de Pedro N, Link W. Targeting nucleocytoplasmic transport in cancer therapy. Oncotarget. 2014;5(1):11-28.

  56. Jiang P, Tang Y, He L, Tang H, Liang M, Mai C, Hu L, Hong J. Aberrant expression of nuclear KPNA2 is correlated with early recurrence and poor prognosis in patients with small hepatocellular carcinoma after hepatectomy. Med Oncol. 2014;31(131):1-7.

  57. Liu X, Chong Y, Tu Y, Liu N, Yue C, Qi Z, Liu H, Yao Y, Liu H, Gao S, Niu M, Yu R. CRM1/XPO1 is associated with clinical outcome in glioma and represents a therapeutic target by perturbing multiple core pathways. J Hematol Oncol. 2016;9(108):1-14.

  58. Noske A, Weichert W, Niesporek S, Roske A, Buckendahl AC, Koch I, Sehouli J, Dietel M, Denkert C. Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer. 2008;112(8):1733-43.

  59. Van Der Watt PJ, Zemanay W, Govender D, Hendricks DT, Parker MI, Leaner VD. Elevated expression of the nuclear export protein, Crm1 (exportin 1), associates with human oesophageal squamous cell carcinoma. Oncol Rep. 2014;32:730-8.

  60. Yao Y, Dong Y, Lin F, Zhao H, Shen Z, Chen P, Sun Y, Tang L, Zheng S. The expression of CRM1 is associated with prognosis in human osteosarcoma. Oncol Rep. 2009;21:229-35.

  61. Huang W, Qiu W. Prognostic value of CRM1in pancreas cancer. Clin Invest Med. 2009;32(6):315-21.

  62. Xia F, Lee CW, Altieri DC. Tumor cell dependence on Ran-GTP-directed mitosis. Cancer Res. 2008;68(6):1826-33.

  63. Abe H, Kamai T, Shirataki H, Oyama T, Arai K, Yoshida KI. High expression of Ran GTPase is associated with local invasion and metastasis of human clear cell renal cell carcinoma. Int J Cancer. 2008;122(10):2391-7.

  64. Ouellet V, Guyot MC, Le Page C, Filali-Mouhim A, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM. Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer. 2006;119:599-607.

  65. Liang X, Pan K, Chen M, Li J, Wang H, Zhao J, Sun J, Chen Y, Ma H, Wang Q, Xia J. Decreased expression of XPO4 is associated with poor prognosis in hepato-cellular carcinoma. Gastroenterol Hepatol Bed Bench. 2011;26:544-9.

  66. Fabbro M, Henderson BR. Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp Cell Res. 2003;282:59-69.

  67. Faustino RS, Nelson TJ, Terzic A, Perez-Terzic C. Nuclear transport: target for therapy. Clin Pharmacol Ther. 2007;81(6):880-86.

  68. Maekawa T, Maniwa Y, Doi T, Nishio W, Yoshimura M, Ohbayashi C, Hayashi Y, Okita Y. Expression and local-ization of FOXO1 in non-small cell lung cancer. Oncol Rep. 2009;22:57-64.

  69. Karin M, Cao Y, Greten FR, Li Z-W. Nf-Kb in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301-10.

  70. Hajimoradi M, Hassan ZM, Ebrahimi M, Soleimani M, Bakhshi M, Firouzi J, Samani FS. STAT3 is overactivated in gastric cancer stem-like cells. Cell J. 2016;17(4):617-28.

  71. Liao DJ, Dickson RB. c-Myc in breast cancer. Endocr Relat Cancer. 2000;7:143-64.

  72. Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004;90:1612-9.

  73. Gong Y, Zhang X, Chen R, Wei Y, Zou Z, Chen X. Cytoplasmic expression of C-MYC protein is associated with risk stratification of mantle cell lymphoma. Peer J. 2017;5:1-14.

  74. Lo HW, Hsu SC, Hung MC. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat. 2006;95:211-8.

  75. Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R, Rimm D, Burtness BA. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res. 2005;11(16):5856-62.

  76. Traynor AM, Weigel TL, Oettel KR, Yang DT, Zhang C, Kim K, Salgia R, Iida M, Brand TM, Hoang T, Campbell TC, Hernan HR, Wheeler DL. Nuclear EGFR protein expression predicts poor survival in early stage non-small cell lung cancer. Lung Cancer. 2013;81:138-41.

  77. Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer. 2009;9(11):810-20.

  78. Qin J, Nag S, Wang W, Zhou J, Zhang W, Zhang R. NFAT as a cancer target: mission possible? Biochim Biophys Acta. 2016;1846(2):297-311.

  79. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-la and HIF-2a in normal human tissues, cancers, and tumor-associated macro-phages. Am J Pathol. 2000;157(2):411-21.

  80. Wang L, Xing J, Cheng R, Shao Y, Li P, Zhu S, Zhang S. Abnormal localization and tumor suppressor function of epithelial tissue-specific transcription factor ESE3 in esophageal squamous cell carcinoma. PLoS One. 2015;10(5):1-14.

  81. I to K, Liu Q, Salto-tellez M, Yano T, Tada K, Ida H, Huang C, Shah N, Inoue M, Rajnakova A, Hiong KC, Peh BK, Han HC, Ito T, Teh M, Yeoh KG, Ito Y. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res AACR. 2005;65(17):7743-51.

  82. Wang Y, Zhou Y, Graves DT. FOXO Transcription factor: their clinical significance and regulation. Biomed Res Int. 2014;1-13.

  83. Putker M, Madl T, Vos HR, de Ruiter H, Visscher M, van den Berg MCW, Kaplan M, Korswagen HC, Boelens R, Vermeulen M, Burgering BMT, Dansen TB. Redox- dependent control of FOXO/DAF-16 by transportin-1. Mol Cell. 2013;49:730-42.

  84. Golson ML, Kaestner KH. Fox transcription factors: from development to disease. Development. 2016;143:4558-70.

  85. Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27:2276-88.

  86. Oeckinghaus A, Ghosh S. The NF-kB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:1-14.

  87. Sokolova O, Naumann M. NF-KB signaling in gastric cancer. Toxins (Basel). 2017;9(119):1-22.

  88. Torgerson TR, Colosia AD, Donahue JP, Lin Y, Hawiger J. Regulation of NF-KB, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-kappa B p50. J Immunol. 1998;161:6084-92.

  89. Chen LF, Greene WC. Regulation of distinct biological activities of the NF-KB transcription factor complex by acetylation. J Mol Med. 2003;81:549-57.

  90. Chahine MN, Pierce GN. Therapeutic targeting of nuclear protein import in pathological cell conditions. Pharmacol Rev. 2009;61(3):358-72.

  91. Meyer T, Vinkemeier U. STAT nuclear translocation: potential for pharmacological intervention. Expert Opin Ther Targets. 2007;11(10):1355-66.

  92. Shukla S, Shishodia G, Mahata S, Hedau S, Pandey A, Bhambhani S, Batra S, Basir SF, Das BC, Bharti AC. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Mol Cancer. 2010;9(282):1-17.

  93. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H. Persistently activated Stat3 maintains constitutive NF-KB activity in tumors. Cancer Cell. 2009;15:283-93.

  94. Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988;8(10):4048-54.

  95. Chen BJ, Wu YL, Tanaka Y, Zhang W. Small molecules targeting c-Myc oncogene: promising anti-cancer thera-peutics. Int J Biol Sci. 2014;10:1084-96.

  96. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253-64.

  97. Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin pi and CRM1. J Cell Biochem. 2006;98:1570-83.

  98. Hsu SC, Hung MC. Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem. 2007;282(14):10432-40.

  99. Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, Deric L. Nuclear EGFR as a molecular target in cancer. Radiother Oncol. 2013;108(3):1-18.

  100. Dickmanns A, Monecke T, Ficner R. Structural basis of targeting the exportin CRM1 in cancer. Cells. 2015;4:538-68.

  101. Gravina G, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol. 2014;7(85):1-9.

  102. Martens-de Kemp SR, Nagel R, Stigter-van Walsum M, van der Meulen IH, van Beusechem VW, Braakhuis BJM, Brakenhoff RH. Functional genetic screens identify genes essential for tumor cell survival in head and neck and lung cancer. Clin Cancer Res. 2013;19(8):1994-2003.

  103. Kosugi S, Hasebe M, Entani T, Takayama S, Tomita M, Yanagawa H. Design of peptide inhibitors for the importin a/b nuclear import pathway by activity-based profiling. Chem Biol. 2008;15:940-49.

  104. Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin a/p-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012;443:851-56.

  105. van der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, Angus L, Hadley K, Lang D, Wei W, Birrer MJ, Trent JO, Leaner VD. Targeting the nuclear import receptor, KpnB1 as an anti-cancer therapeutic. Mol Cancer Ther. 2016;1-14.

  106. Inoue H, Kauffman M, Shacham S, Landesman Y, Yang J, Evans CP, Weiss RH. CRM1 blockade by selective inhibitors of nuclear export attenuates kidney cancer growth. J Urol. 2013;189(6):2317-26.

  107. Crochiere M, Senapedis W, Kashyap T, Rashal T, Kauffman M, Shacham S, Landesman Y. The selective inhibitor of nuclear export compound, selinexor, inhibits NF-kB and induces anti-non-small cell lung cancer activity regardless of p53 status. Int J Cancer Res Mol Mech. 2016;2(2):1-11.

  108. Liu X, Chong Y, Liu H, Han Y, Niu M. Novel reversible selective inhibitor of CRM1 for targeted therapy in ovarian cancer. J Ovarian Res. 2015;8(35):1-9.

  109. Yan W, Li R, He J, Du J, Hou J. Importin pi mediates nuclear factor-KB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis. Cell Signal. 2015;27:851-59.

CITÉ PAR
  1. Marretta Antonella Lucia, Di Lorenzo Giuseppe, Ribera Dario, Cannella Lucia, von Arx Claudia, Bracigliano Alessandra, Clemente Ottavia, Tafuto Roberto, Pizzolorusso Antonio, Tafuto Salvatore, Selinexor and the Selective Inhibition of Nuclear Export: A New Perspective on the Treatment of Sarcomas and Other Solid and Non-Solid Tumors, Pharmaceutics, 13, 9, 2021. Crossref

  2. Ajayi-Smith Aderonke, van der Watt Pauline, Mkwanazi Nonkululeko, Carden Sarah, Trent John O., Leaner Virna D., Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells, Experimental Cell Research, 404, 2, 2021. Crossref

  3. Zhao Changpu, Sun Junbo, Dang Zhongqin, Su Qianqian, Yang Jingbo, Circ_0000775 promotes the migration, invasion and EMT of hepatic carcinoma cells by recruiting IGF2BP2 to stabilize CDC27, Pathology - Research and Practice, 235, 2022. Crossref

  4. Li Lin, Wang Nan, Xiong Youyi, Guo Guangcheng, Zhu Mingzhi, Gu Yuanting, Transcription Factor FOSL1 Enhances Drug Resistance of Breast Cancer through DUSP7-Mediated Dephosphorylation of PEA15, Molecular Cancer Research, 20, 4, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain