Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Eukaryotic Gene Expression
Facteur d'impact: 2.156 Facteur d'impact sur 5 ans: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimer: 1045-4403
ISSN En ligne: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2020027084
pages 349-357

Strong Correlation between the Expression of CHEK1 and Clinicopathological Features of Patients with Multiple Myeloma

Xiao-Ping Liu
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Xiao-Hong Yin
School of Health Sciences, Wuhan University, Wuhan 430071, China
Xiang-Yu Meng
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Yue Cao
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Xin-Hui Yan
Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
Li He
Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China


Multiple myeloma (MM) is one of the most common malignancies, and the clinical outcome of patients with MM remains poor. Our objective is to screen biomarkers correlated with clinicopathological features and survival of patients with MM. A gene co-expression network was constructed to screen hub genes related to the three stages in the International Staging System (ISS) of MM. Functional analysis and protein-protein interaction analysis of the hub genes was performed. CHEK1, a gene most related to the ISS stages of MM, was selected for further clinical validation. A total of 780 hub genes correlated with ISS stages of MM were identified. Functional enrichment analysis of hub genes suggested that these genes were mostly enriched in several gene ontology (GO) terms and pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) that were involved in cell proliferation and immune response. Expression of the gene for the protein checkpoint kinase I (CHEK1) was increased in MM cells from newly diagnosed patients (P = 0.0304) and relapsed patients (P = 0.0002) as compared to normal plasma cells. Meanwhile, CHEK1 was increased more in MM patients with stage II disease (P = 0.0321) and stage III disease (P = 0.0076) than in those with stage I disease. Survival analysis indicated that MM patients in the group characterized by low CHEK1 expression were associated with better clinical outcomes in terms of time to progression, event-free survival, and overall survival. High expression of CHEK1 predicted poor clinical characteristics of MM patient, and our results indicate that it can be considered a biomarker for the diagnosis of MM.


  1. J, Knauf W, Goldschmidt H. Diagnosis and treatment of multiple myeloma in Germany: Analysis of a nationwide multi-institutional survey. Ann Hematol. 2017;96(6):987-93.

  2. Gozzetti A, Papini G, Defina M, Bocchia M. Extramedullar myeloma relapses. Ann Hematol. 2012;91(9):1511-2?.

  3. Chan HSH, Chen CI, Reece DE. Current review on high-risk multiple myeloma. Curr Hematol Malig Rep. 2017;12(2):96-108.

  4. MacLennan IC, Drayson M, Dunn J. Multiple myeloma. BMJ. 1994;308(6935):1033-6.

  5. Bergin K, McQuilten Z, Moore E, Wood E, Spencer A. Myeloma in the real world: What is really happening? Clin Lymphoma Myeloma Leuk. 2017;17(3):133-44.e1.

  6. Liu X, Chen J, He YA, Meng X, Li K, He CK, Liu S. Comparing efficacy and survivals of initial treatments for elderly patients for elderly patients with newly diagnosed multiple myeloma: A network meta-analysis of randomized controlled rials. Onco Targets Ther. 2017;10:121-8.

  7. Berenson A, Vardanyan S, David M, Wang J, Harutyunyan NM, Gottlieb J, Halleluyan R, Spektor TM, Udd KA, Eshaghian S, Nassir Y, Eades B, Swift R, Berenson JR. Outcomes of multiple myeloma patients receiving bortezomib, lenalidomide, and carfilzomib. Ann Hematol. 2017;96(3):449-59.

  8. Terpos E; International Myeloma Society. Multiple myeloma: Clinical updates from the American Society of Hematology Annual Meeting 2016. Clin Lymphoma Myeloma Leuk. 2017;17(6):329-39.

  9. Cejalvo MJ, de la Rubia J. Which therapies will move to the front line for multiple myeloma? Expert Rev Hematol. 2017;10(5):383-92.

  10. Cejalvo MJ, de la Rubia J. Clinical treatment of newly diagnosed multiple myeloma. Expert Rev Hematol. 2015;8(5):595-611.

  11. Rajkumar SV, Buadi F. Multiple myeloma: New staging systems for diagnosis, prognosis and response evaluation. Best Pract Res Clin Haematol. 2007;20(4):665-80.

  12. Kyrtsonis MC, Maltezas D, Tzenou T, Koulieris E, Bradwell AR. Staging systems and prognostic factors as a guide to therapeutic decisions in multiple myeloma. Semin Hematol. 2009;46(2):110-7.

  13. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

  14. Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics. 2007;8:22.

  15. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A, Bertsch U, Buijs A, Stevens-Kroef M, Beverloo HB, Vellenga E, Zweegman S, Kersten MJ, van der Holt B, el Jarari L, Mulligan G, Goldschmidt H, van Duin M, Sonneveld P. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116(14):2543-53.

  16. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K, Chung TH, Kim S, Mulligan G, Bryant B, Carpten J, Gertz M, Rajkumar SV, Lacy M, Dispenzieri A, Kyle R, Greipp P, Bergsagel PL, Fonseca R. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67(7):2982-9.

  17. Tiedemann RE, Zhu YX, Schmidt J, Yin H, Shi CX, Que Q, Basu G, Azorsa D, Perkins LM, Braggio E, Fonseca R, Bergsagel PL, Mousses S, Stewart AK. Kinome-wide RNAi studies in human multiple myeloma identify vul-nerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood. 2010;115(8):1594-604.

  18. Gaji RY, Behnke MS, Lehmann MM, White MW, Carruthers VB. Cell cycle-dependent, intercellular transmission of Toxoplasma gondii is accompanied by marked changes in parasite gene expression. Mol Microbiol. 2011;79(1):192-204.

  19. Kryukov F, Nemec P, Radova L, Kryukova E, Okubote S, Minarik J, Stefanikova Z, Pour L, Hajek R. Centrosome associated genes pattern for risk sub-stratification in multiple myeloma. J Transl Med. 2016;14(1):150.

  20. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioin-formatics. 2004;20(3):307-15.

  21. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363-7.

  22. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

  23. Oldham MC, Langfelder P, Horvath S. Network methods for describing sample relationships in genomic datasets: Application to Huntington's disease. BMC Syst Biol. 2012;6:63. doi: 10.1186/1752-0509-6-63.

  24. Li A, Horvath S. Network module detection: Affinity search technique with the multinode topological overlap measure. BMC Res Notes. 2009;2:142.

  25. Dong J, Horvath S. Understanding network concepts in modules. BMC Syst Biol. 2007;1:24.

  26. Liu XP, Yin XH, Meng XY, Yan XH, Wang F, He L. Development and validation of a 9-gene prognostic signature in patients with multiple myeloma. Front Oncol. 2019 Jan 8;8:615.

  27. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.

  28. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-52.

  29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.

  30. Ma CX, Janetka JW, Piwnica-Worms H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011;17(2):88-96.

  31. McNeely S, Beckmann R, Bence Lin AK. CHEK again: Revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther. 2014;142(1):1-10.

  32. Sarmento LM, Barata JT. CHK1 and replicative stress in T-cell leukemia: Can an irreverent tumor suppressor end up playing the oncogene? Adv Biol Regul. 2016; 60:115-21.

  33. Zhou X, Liu W, Hu X, Dorrance A, Garzon R, Houghton PJ, Shen C. Regulation of CHK1 by mTOR contributes to the evasion of DNA damage barrier of cancer cells. Sci Rep. 2017;7(1):1535.

  34. Yin Y, Shen Q, Zhang P, Tao R, Chang W, Li R, Xie G, Liu W, Zhang L, Kapoor P, Song S, Ajani J, Mills GB, Chen J, Tao K, Peng G. Chk1 inhibition potentiates the therapeutic efficacy of PARP inhibitor BMN673 in gastric cancer. Am J Cancer Res. 2017;7(3):473-83.

  35. Song N, Che X, Xu L, Qu J, Zheng H, Hou K, Qu X, Liu Y. A novel function of hepatocyte growth factor in the activation of checkpoint kinase 1 phosphorylation in colon cancer cells. Mol Cell Biochem. 2017;436Q-2):29-38.

  36. Lee HJ, Cao Y, Pham V, Blackwood E, Wilson C, Evangelista M, Klijn C, Stokoe D, Settleman J. Ras-MEK signaling mediates a critical Chk1-dependent DNA damage response in cancer cells. Mol Cancer Ther. 2017;16(4):694-704.

  37. Bargiela-Iparraguirre J, Prado-Marchal L, Fernan-dez-Fuente M, Gutierrez-Gonzalez A, Moreno-Rubio J, Munoz-Fernandez M, Sereno M, Sanchez-Prieto R, Perona R, Sanchez-Perez I. CHK1 expression in gastric cancer is modulated by p53 and RB1/E2F1: Implications in chemo/radiotherapy response. Sci Rep. 2016;6:21519.

  38. Bataille R, Annweiler C, Beauchet O. Multiple myeloma international staging system: "staging" or simply "aging" system? Clin Lymphoma Myeloma Leuk. 2013;13(6):635-7.

Articles with similar content:

Prognostic Value of Ki-67/MIB-1 Expression in Meningioma Patients: A Meta-Analysis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.29, 2019, issue 2
Ruofei Liang, Yanhui Liu, Junhong Li, Yufan Xiang, Chen Song
Identification of Hub Genes in Gastric Cancer with High Heterogeneity Based on Weighted Gene Co-Expression Network
Critical Reviews™ in Eukaryotic Gene Expression, Vol.30, 2020, issue 2
Yan Zhao, Zhe Dong, Shuai Guo, Shengnan Pei, Yue Wang
The Prognostic Role of Tumor-Associated Macrophages and Dendritic Cells in Classic Hodgkin's Lymphoma
Journal of Environmental Pathology, Toxicology and Oncology, Vol.32, 2013, issue 4
Mohammed Shabaan, Nancy Youssef Asaad, Iman Loay, Nahla Badr, Asmaa Gaber Abdou
The Prognostic Value of Small Noncoding microRNA-21 Expression in the Survival of Cancer Patients: A Meta-Analysis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.30, 2020, issue 3
Gordon A. Ferns, Seyed Mahdi Hassanian Mehr, Maryam Moradi Binabaj, Mikhail Ryzhikov, Amir Avan, Saman Soleimanpour, Majid Khazaei, Afsane Bahrami
A Putative Association of Interleukin-1β Promoter Polymorphisms and IL-1β Levels in Saudi Diabetic Patients
Critical Reviews™ in Eukaryotic Gene Expression, Vol.28, 2018, issue 4
Shams Tabrez, Ghulam Md. Ashraf, Salwa Hindawi