Abonnement à la biblothèque: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Publication de 6  numéros par an

ISSN Imprimer: 1045-4403

ISSN En ligne: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Identification of Potential Core Genes in Immunoglobulin-Resistant Kawasaki Disease Using Bioinformatics Analysis

Volume 30, Numéro 1, 2020, pp. 85-91
DOI: 10.1615/CritRevEukaryotGeneExpr.2020028702
Get accessGet access

RÉSUMÉ

Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease (KD) is a complex disease, leading to the damage of multiple systems. The pathogen that triggers this sophisticated disease is still unknown. The aim of this study was to identify gene signatures during IVIG-resistant KD and uncover their potential mechanisms. The gene expression profiles of GSE18606 were downloaded from the GEO database. The GSE18606 dataset contained eight IVIG-resistant KD samples and nine healthy age-appropriate controls. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. In total, 73 DEGs were identified in IVIG-resistant KD, including 58 upregulated genes and 15 downregulated genes. GO analysis results showed that DEGs were significantly enriched in biological processes of neutrophil degranulation, neutrophil mediated immunity, and neutrophil activation involved in immune response. Among them, 10 hub genes (S100A8, S100A9, S100A12, HGF, LCN2, LY96, CTGF, MMP8, IRAK3, and SLPI) with a high degree of connectivity were selected. The present study indicated that the identified DEGs and hub genes promote our understanding of the molecular mechanisms underlying the development of IVIG-resistant KD, and might be used as molecular targets and diagnostic biomarkers for the treatment of IVIG-resistant KD.

RÉFÉRENCES
  1. Kao AS, Getis A, Brodine S, Burns JC. Spatial and temporal clustering of Kawasaki syndrome cases. Pediatr Infect Dis J. 2008;27:981-85.

  2. Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ, Colan SD, Duffy CE, Fulton DR, 15. Glode MP, Mason WH. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med. 1991;324:1633-39.

  3. Nakamura Y, Yashiro M, Uehara R, Sadakane A, Tsuboi S, Aoyama Y, Kotani K, Tsogzolbaatar EO, Yanagawa H. 16. Epidemiologic features of Kawasaki disease in Japan: results of the 2009-2010 nationwide survey. J Epidemiol. 2012;22:216-21.

  4. Campbell AJ, Burns JC. Adjunctive therapies for Kawasaki disease. J Inf Secur. 2016;72:S1-S5.

  5. Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5:588-99.

  6. Nannini M, Pantaleo MA, Maleddu A, Astolfi A, Formica S, Biasco G. Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treat Rev. 2009;35:201-9.

  7. Yanagawa H, Nakamura Y, Yashiro M, Ojima T, Tanihara S, Oki I, Zhang T. Results of the nationwide epidemiologic survey of Kawasaki disease in 1995 and 1996 in Japan. Pediatrics. 1998;102:E65.

  8. Pan Y, Lu H. Angiotensin-converting enzyme insertion/ deletion polymorphism and susceptibility to Kawasaki disease: a meta-analysis. Afr Health Sci. 2017;17:991-99.

  9. Nacken W, Roth J, Sorg C, Kerkhoff C. S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc Res Tech. 2003;60:569-80.

  10. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13:1042-49.

  11. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PP, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis. 2008;29:2035-43.

  12. Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Fursten-berger G, Muller-Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, Hess J, Angel P. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med. 2008;205:275-85.

  13. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol. 2008;83:1484-92.

  14. Oesterle A, Bowman MA. S100A12 and the S100/cal- granulins: emerging biomarkers for atherosclerosis and possibly therapeutic targets. Arterioscler Thromb Vasc Biol. 2015;35:2496-507.

  15. Wittkowski H, Kuemmerle-Deschner JB, Austermann J, Holzinger D, Goldbach-Mansky R, Gramlich K, Lohse P, Jung T, Roth J, Benseler SM, Foell D. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2011 ;70:2075-81.

  16. Holzinger D, Frosch M, Kastrup A, Prince FH, Otten MH, Van Suijlekom-Smit LW, ten Cate R, Hoppenreijs EP, Hansmann S, Moncrieffe H, Ursu S, Wedderburn LR, Roth J, Foell D, Wittkowski H. The toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann Rheum Dis. 2012;71:974-80.

  17. Hurnakova J, Zavada J, Hanova P, Hulejova H, Klein M, Mann H, Sleglova, Olejarova M, Forejtova S, Ruzickova, Komarc M, Vencovsky J, Pavelka K, Senolt L. Serum calprotectin (S100A8/9): an independent predictor of ultrasound synovitis in patients with rheumatoid arthritis. Arthritis Res Ther. 2015;17:252.

  18. Foell D, Kane D, Bresnihan B, Vogl T, Nacken W, Sorg C, Fitzgerald O, Roth J. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology (Oxford). 2003;42:1383-89.

  19. Foel D, Kucharzik T, Kraft M, Vogl T, Sorg C, Domschke W, Roth J. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut. 2003;52:847-53.

  20. Foell D, Seeliger S, Vogl T, Koch HG, Maschek H, Harms E, Sorg C, Roth J. Expression of S100A12 (EN-RAGE) in cystic fibrosis. Thorax. 2003;58:613-7.

  21. Foell D, Ichida F, Vogl T, Yu X, Chen R, Miyawaki T, Sorg C, Roth J. S100A12 (EN-RAGE) in monitoring Kawasaki disease. Lancet. 2003;361:1270-72.

  22. Ebihara T, Endo R, Kikuta H, Ishiguro N, Ma X, Shimazu M, Otoguro T, Kobayashi K. Differential gene expression of S100 protein family in leukocytes from patients with Kawasaki disease. Eur J Pediatr. 2005;164:427-31.

  23. Abe J, Jibiki T, Noma S, Nakajima T, Saito H, Terai M. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol. 2005;174:5837-45.

CITÉ PAR
  1. Geng Zhimin, Liu Jingjing, Hu Jian, Wang Ying, Tao Yijing, Zheng Fenglei, Wang Yujia, Fu Songling, Wang Wei, Xie Chunhong, Zhang Yiying, Gong Fangqi, Crucial transcripts predict response to initial immunoglobulin treatment in acute Kawasaki disease, Scientific Reports, 10, 1, 2020. Crossref

  2. Kim Jae-Jung, Hong Young Mi, Yun Sin Weon, Lee Kyung-Yil, Yoon Kyung Lim, Han Myung-Ki, Kim Gi Beom, Kil Hong-Ryang, Song Min Seob, Lee Hyoung Doo, Ha Kee Soo, Jun Hyun Ok, Choi Byung-Ok, Oh Yeon-Mok, Yu Jeong Jin, Jang Gi Young, Lee Jong-Keuk, Identification of rare coding variants associated with Kawasaki disease by whole exome sequencing, Genomics & Informatics, 19, 4, 2021. Crossref

  3. Geng Zhimin, Tao Yijing, Zheng Fenglei, Wu Linlin, Wang Ying, Wang Yujia, Sun Yameng, Fu Songling, Wang Wei, Xie Chunhong, Zhang Yiying, Gong Fangqi, Altered Monocyte Subsets in Kawasaki Disease Revealed by Single-cell RNA-Sequencing, Journal of Inflammation Research, Volume 14, 2021. Crossref

Prochains articles

PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan PURPL promotes M2 macrophage polarization in lung cancer via regulating RBM4/xCT signaling Jipeng Guo, Chongwen Gong, Hao Wang SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain