Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Eukaryotic Gene Expression
Facteur d'impact: 1.841 Facteur d'impact sur 5 ans: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimer: 1045-4403
ISSN En ligne: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2019028579
pages 295-304

Mitochondria and Cardiovascular Disease: A Brief Account

Michela Pecoraro
Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
Aldo Pinto
Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
Ada Popolo
Department of Pharmacy, University of Salerno, Fisciano (SA), Italy

RÉSUMÉ

Mitochondria represent the heart unit of the cardiac cell because they are involved in ATP production and in the transfer to the contractile apparatus. Furthermore, mitochondria modulate Ca2+ homeostasis, manage redox status, and regulate response to cellular and environmental stresses. Abnormalities in mitochondrial organelle structure and function have been observed in many cardiovascular diseases, such as ischemic cardiomyopathy, heart failure, and stroke, and in drug-induced cardiomyopathies. This review summarizes the recent literature in this field.

RÉFÉRENCES

  1. Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014;22:38-48.

  2. Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol. 2015;25:911-21.

  3. Van der Stel AX, Boogerd FC, Huynh S, Parker CT, van Dijk L, van Putten JPM, Wosten MMSM. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni. 18. Mol Microbiol. 2017;105:637-51.

  4. Noji H, Yasuda R, Yoshida M, Kinosita K Jr. Direct observation of the rotation of F1-ATPase. Nature. 1997;386:299-302.

  5. Ellenrieder L, Rampelt H, Becker T. Connection ofprotein 19. transport and organelle contact sites in mitochondria. J Mol Biol. 2017;429:2148-60.

  6. Benit P, Letouze E, Rak M, Aubry L, Burnichon N, Favier J, Gimenez-Roqueplo AP, Rustin P. Unsuspected 20. task for an old team: succinate, fumarate and other krebs cycle acids in metabolic remodeling. Biochim Biophys Acta. 2014;1837:1330-37.

  7. Golpich M, Amini E, Mohamed Z, Azman AR, Mohamed IN, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther. 2017;23:5-22.

  8. Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release. 2007;121:125-36.

  9. Pearson BL, Ehninger D. Environmental chemicals and aging. Curr Environ Health Rep. 2017;4:38-43.

  10. Scorrano L. Multiple functions of mitochondria-shaping proteins. Novartis Found Symp. 2007;287:47-55.

  11. Wasilewski M, Scorrano L. The changing shape of 24. mitochondrial apoptosis. Trends Endocrinol Metab. 2009;20:287-94.

  12. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145-59.

  13. Hoppel CL, Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol. 2009;41:1949-56.

  14. Zak R, Rabinowitz M, Rajamanickam C, Merten S, Kwiatkowska-Patzer B. Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol. 1980;75:171-8.

  15. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007;75:283-90.

  16. Ruiz-Meana M, Nunez E, Miro-Casas E, Martinez-Acedo P, Barba I, Rodriguez-Sinovas A, Inserte J, Fernandez-Sanz C, Hernando V, Vazquez J, Garcia-Dorado D. Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J Mol Cell Cardiol. 2014;68:79-88.

  17. Srisakuldee W, Makazan Z, Nickel BE, Zhang F, Thliveris JA, Pasumarthi KBS, Kardami E. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc Res. 2014;103:72-80.

  18. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R. Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol. 2009;104:141-7.

  19. Yue Y, Qin Q, Cohen MV, Downey JM, Critz SD. The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning's protective pathway in rat heart. Cardiovasc Res. 2002;55:681-9.

  20. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol. 2003;285:H921-H930.

  21. Light PE, Kanji HD, Fox JE, French RJ. KATP channels mediate the antihypertrophic effects afforded by K-opioid receptor stimulation in neonatal rat ventricular myocytes. FASEB J. 2001;15:2586-94.

  22. Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodriguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia-Dorado D. Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res. 2009;83:747-56.

  23. Pecoraro M, Verrilli V, Pinto A, Popolo A. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. 2015;768:71-6.

  24. Pecoraro M, Ciccarelli M, Fiordelisi A, Iaccarino G, Pinto A, Popolo A. Diazoxide improves mitochondrial connexin 43 expression in a mouse model of doxorubicin-induced cardiotoxicity. Int J Mol Sci. 2018;19:757.

  25. Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R. Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med. 2002;16:1649-55.

  26. Pecoraro M, Pinto A, Popolo A. Inhibition of connexin 43 translocation on mitochondria accelerates CoCl2-induced apoptotic response in a chemical model of hypoxia. Toxicol in Vitro. 2017;.47:120-8.

  27. Pecoraro M, Rodriguez-Sinovas A, Marzocco S, Ciccarelli M, Iaccarino G, Pinto A, Popolo A. Cardiotoxic effects of short-term doxorubicin administration: involvement of connexin 43 in calcium impairment. Int J Mol Sci. 2017;18:2121.

  28. Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res. 2010;88:40-50.

  29. Rizzuto R, Pinton P., Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280:1763-6.

  30. Ben-Hail D, Palty R, Shoshan-Barmatz V. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2014.

  31. Palty R, Sekler I. The mitochondrial Na +/Ca2+ exchanger. 43. Cell Calcium. 2012;52:9-15.

  32. Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JH, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/ Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol. 2015;15:593:1361-82.

  33. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 2012;335:686-90.

  34. Matsuoka S, Hilgemann DW. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992;100:963-1001.

  35. Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004;56:633-47.

  36. Besserer GM, Ottolia M, Nicoll DA, Chaptal V, Cascio D, Philipson KD, Abramson J. The second Ca2+-binding domain of the Na+-Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc Natl Acad Sci. 2007;104:18467-72.

  37. Marin-Garcia J, Goldenthal MJ. The mitochondrial organelle and the heart. Revista Espanola Cardiol (English 49. Edition). 2002 Dec 1;55(12):1293-310.

  38. Jin HJ, Li CG. Tanshinone IIA and cryptotanshinone prevent mitochondrial dysfunction in hypoxia-induced H9c2 cells: association to mitochondrial ROS, intracellular nitric oxide, and calcium levels. Evidence-based Comp Alt Med. 2013;610694.

  39. Forini F, Nicolini G, Iervasi G. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: role of thyroid hormone triiodothyronine. Int J Mol Sci. 2015;16:6312-36.

  40. Shintany-Ishida K, Inui M, Yoshida K. Ischemia-reperfusion induces myocardial infarction through mitochondrial Ca2+ overload. J Mol Cell Cardiol. 2012;53:233-9.

  41. Fernandez-Sanz C, Ruiz-Meana M, Castellano J, Miro-Casas E, Nunez E, Inserte J, Vazquez J, Garcia-Dorado D. Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thromb Haemost. 2015;113:441-51.

  42. Inserte J, Ruiz-Meana M, Rodriguez-Sinovas A, Barba I, Garcia-Dorado D. Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. Antioxid Redox Signal. 2011;14:923-39.

  43. Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res. 2012;94:168-80.

  44. Ruiz-Meana M, Abellan A, Miro-Casas E, Agullo E, Garcia-Dorado D. Role of sarcoplasmatic reticulum in mitochondrial permeability transition and cardiomyocyte death during reperfusion. Am J Physiol Heart Circ Physiol. 2009;297:H1281-H1289.

  45. Claypool SM, Koehler CM. The complexity of cardiolipin in health and disease. Trends Biochem Sci. 2012;37:32-41.

  46. Schuiki I, Schnabl M, Czabany T, Hrastnik C, Daum G. Phosphatidylethanolamine synthesized by four different pathways is supplied to the plasma membrane of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2010;1801:480-6.

  47. Beyer K, Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry. 1985;24:3821-6.

  48. Lange C, Nett JH, Trumpower BL, Hunte C. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J. 2001;20:6591-600.

  49. Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem. 2000;275:22387-94.

  50. Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah M. Redox signalling in cardiac myocytes. Free Radical Bio Med. 2011;50:777-93.

  51. Qingdong K, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469-80.

  52. Hausenloy DJ, Barrabes JA, Betker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, Ibanez B, Iliodromitis EK, Inserte J, Jennings R, Kalia N, Kharbanda R, Lecour S, Marber M, Miura T, Ovize M, Perez-Pinzon MA, Piper HM, Przyklenk K, Schmidt MR, Redington A, Ruiz-Meana M, Vilahur G, Vinten-Johansen J, Yellon DM, Garcia-Dorado D. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol. 2016;111:6.

  53. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res. 2008;77:334-43.

  54. Sabbah HN. Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther. 2016;14:1305-13.

  55. Rosca MG, Hoppel L. Mitochondrial dysfunction in heart 69. failure. Heart Fail Rev. 2013;18(5):607-22.

  56. Rowe GC, Jiang A, Arany Z. PGC-1 coactivators in cardiac development and disease. Circ Res. 2010;107:825-38.

  57. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H2181-H2190.

  58. Bayeva M, Sawicki KT, Butler J. Abnormalities of mitochondria result in excessive production of ROS and reduced production of ATP, inducing morphologic changes in mitochondria that lead to mtDNA damage, cellular DNA damage, and ultimately apoptosis. Circ 71 Heart Fail. 2014;7:680-91.

  59. Ikeda Y, Shirakabe A, Brady C. Damage to mitochondria from excess ROS production limits the production of ATP to a level insufficient to support the H+ pump function 72 during times of high oxidative energy requirements of cardiomyocytes. J Mol Cell Cardiol. 2015;78:116-22.

  60. Mattingly PH, Lohr KN. Acute myocardial infarction: setting priorities for effectiveness research: report of a study by a committee of the Institute of Medicine, Division of Health Care Services. Washington DC: National Academies Press; 1990.

  61. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica Biophysica Acta. 2010;1802:80-91.

  62. Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46:821-31.

  63. Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol. 2012;8:863-84.

  64. Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta. 2009;1787:1402-15.

  65. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Lett. 2004;567:96-102.

  66. Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G. Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin Am J Physiol Cell Physiol. 2011;300:C707-C720.

  67. Van Veen AA, van Rijen HV, Opthof T. Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res. 2001;51:217-29.

  68. Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC. The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol. 2007;94:245-64.

  69. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miro E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D. Translocation of connexin to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res. 2006;99:93-101.

  70. Rodriguez-Sinovas A, Cabestrero A, Lopez D, Torre I, Morente M, Abellan A, Miro E, Ruiz-Meana M, Garcia-Dorado D. The modulatory effects of connexin on cell death/survival beyond cell coupling. Progr Biophys Mol Biol. 2007;94:219-32.

  71. Pecoraro M, Sorrentino R, Franceschelli S, Del Pizzo M, Pinto A, Popolo A. Doxorubicin-mediated cardiotoxicity: role of mitochondrial connexin Cardiovasc Toxicol. 2016;15:366-76.

  72. Abdel-Raheem IT, Taye A, Abouzied MM. Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol. 2013;113:158-66.

  73. Wong J, Smith LB, Magun EA, Engstrom T, Kelley-Howard K, Jandhyala DM, Thorpe CM, Magun BE, Wood LJ. Small molecule kinase inhibitors block the ZAK-dependent inflammatory effects of doxorubicin. Cancer Biol Ther. 2013;14:56-63.

  74. Nordgren KK, Wallace KB. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts. Toxicol Appl Pharmacol. 2014;274:107-16.

  75. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639-42.

  76. Ghigo A, Li M, Hirsch E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim Biophys Acta. 2016;1863;1916-25.

  77. Gadicherla AK, Wang N, Bulic M, Agullo-Pascual E, Lissoni A, De Smet M, Delmar M, Bultynck G, Krysko DV, Camara A, Schluter K, Schulz R, Kwok W, Leybaert L. Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol. 2017;112:27.