Abonnement à la biblothèque: Guest
Atomization and Sprays

Publication de 12  numéros par an

ISSN Imprimer: 1044-5110

ISSN En ligne: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

PREDICTION OF DROP SIZE DISTRIBUTIONS FROM FIRST PRINCIPLES: JOINT PDF EFFECTS

Volume 10, Numéro 6, 2000, 16 pages
DOI: 10.1615/AtomizSpr.v10.i6.40
Get accessGet access

RÉSUMÉ

The first-principles-based analytical method for predicting drop size distributions in sprays developed in our previous study, and used to investigate the influence of separate fluctuations in liquid physical properties and gas-liquid relative velocity on the drop size distribution, is extended to study the impact of simultaneous fluctuations on the drop size distribution width. Fluctuations of two types are considered: those in gas-liquid relative velocity and those in liquid physical properties. These fluctuations are represented by joint probability distribution functions (pdfs) of velocity-viscosity, velocity-surface tension, and velocity-density. Results demonstrate that combined liquid physical property and velocity fluctuations can lead to drop size distributions significantly wider than those resulting from velocity fluctuations alone. For combined velocity-surface tension fluctuations, this widening is significant over a range of mean velocities, whereas for combined velocity-viscosity and velocity-density fluctuations, the widening is significant only at low mean velocities. Finally, it is observed that the drop size distribution remains almost unchanged for liquid physical property fluctuations less than 1% (RMS/mean) over wide ranges of mean velocities and velocity fluctuations. In such cases the drop size distribution can be predicted satisfactorily by considering velocity fluctuations alone and the expense of using joint pdfs can be avoided.

CITÉ PAR
  1. Sovani S.D, Sojka P.E, Lefebvre A.H, Effervescent atomization, Progress in Energy and Combustion Science, 27, 4, 2001. Crossref

  2. Gadgil Hrishikesh P., Raghunandan B. N., Model for Predicting the Mean Drop Size in Effervescent Sprays, Journal of Propulsion and Power, 27, 5, 2011. Crossref

  3. Jamali Ali Akbar, Shahhosseini Shahrokh, Behjat Yaghoub, Experimental evaluation and modeling of liquid jet penetration to estimate droplet size in a three-phase riser reactor, Chinese Journal of Chemical Engineering, 24, 2, 2016. Crossref

  4. Gadgil Hrishikesh, Raghunandan B.N., Model for Predicting the Mean Drop Size in Effervescent Sprays, Journal of Propulsion and Power, 27, 5, 2011. Crossref

  5. Lepeshinskii I. A., Istomin E. A., Zarankevich I. A., Reshetnikov V. A., Open-type mixing device of a bubble structure, Russian Aeronautics (Iz VUZ), 59, 3, 2016. Crossref

  6. Lee T.-W, An Keju, Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl, Physics of Fluids, 28, 6, 2016. Crossref

  7. Omer K., Ashgriz N., Spray Nozzles, in Handbook of Atomization and Sprays, 2011. Crossref

  8. Déchelette A., Babinsky E., Sojka P. E., Drop Size Distributions, in Handbook of Atomization and Sprays, 2011. Crossref

  9. Mousemi Arash, Mosadegh Sepehr, Khademi Alireza, Sorrentino Giancarlo, Design and Analytical Evaluation of a Swirler-Injector System, Journal of Fluid Flow, Heat and Mass Transfer, 2021. Crossref

  10. Dasgupta Debayan, Sharma Saurabh, Nath Sujit, Bhanja Dipankar, Effects of elasticity number and time constant ratio on breakup and droplet formation of viscoelastic planar liquid sheet co-flowing with gases of equal velocities, Journal of Fluid Mechanics, 920, 2021. Crossref

  11. Czernek Krystian, Hyrycz Michał, Krupińska Andżelika, Matuszak Magdalena, Ochowiak Marek, Witczak Stanisław, Włodarczak Sylwia, State-of-the-Art Review of Effervescent-Swirl Atomizers, Energies, 14, 10, 2021. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain