Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.737 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2020033955
pages 97-109

MOMENTUM ANALYSES FOR DETERMINATION OF DROP SIZE AND DISTRIBUTIONS DURING SPRAY ATOMIZATION

T.-W. Lee
Department of Mechanical and Aerospace Engineering, School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
J. E. Park
Mechanical and Aerospace Engineering, SEMTE, Arizona State University, Tempe, AZ 85287-6106, USA
Hana Bellerova
Heat Laboratory, Brno University of Technology, Brno, Czech Republic
Milan Hnizdl
Heat Laboratory, Brno University of Technology, Brno, Czech Republic
Miroslav Raudensky
Heat Transfer and Fluid Flow Laboratory, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic

RÉSUMÉ

We consider the momentum effects on drop size and distributions during spray atomization. By adding the liquid and gas momentum analysis to conservation equations for mass and energy, we construct a formulation for determination of the spray drop size, number density, and liquid/gas velocities during spray atomization. In this approach, the aerodynamic drag is approximately parameterized by the drag coefficient, and viscous dissipation with dimensional scaling. This allows us to calculate the spray drop size and distributions from the injection parameters. The formulation also yields a broad dynamic perspective of spray atomization in which the liquid momentum undergoes deceleration due to drag and the drop size is the result of attendant energy transfer from the liquid kinetic to surface tension energy. Momentum adds a key component to the analysis of spray atomization leading to some useful relationships between the drop size and velocities. In this work, we present some methods for the use of momentum analyses for determination of drop size and distributions in various spray injection geometries.

RÉFÉRENCES

  1. Bellerova, H., Luks, T., Pohanka, M., Resl, O., and Raudensky, M., Cooling Characteristics of Air-Mist Nozzles for Continuous Casting, Heat Transfer and Fluid Flow, Laboratory Report, Brno University of Technology, Brno, Czech Republic, 2019.

  2. Chen, Y., Wagner, J.L., Farias, P.A., and Guildenbecher, D.R., Study of Galistan Liquid Metal Breakup Using Backlit Imaging and Digital In-Line Holography, ICLASS 14th Triennial Int. Conf. on Liquid Atom. Spray Syst., Chicago, IL, July 22-26,2018.

  3. Elkotb, M.M., Fuel Atomization for Spray Modeling, Prog. Energy Combust. Sci., vol. 8, pp. 61-91,1982.

  4. Eroglu, H. and Chigier, N., Initial Drop Size and Velocity Distributions for Air-Blast Co-Axial Atomizers, ASMEJ Fluids Eng., vol. 113, pp. 453-459,1991.

  5. Gorokhovski, M. and Herrmann, M., Modeling Primary Atomization, Annu. Rev. Fluid Mech., vol. 40, pp. 343-366, 2008.

  6. Hardalupas, Y. and Whitelaw, J.H., The Characteristics of Sprays Produced by Coaxial Airblast Atomizers, J. Propul. Power, vol. 10, pp. 453-460,1994.

  7. Lasheras, J.C., Villermaux, E., and Hoffinger, E.J., Break-Up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet, J. Fluid Mech., vol. 357, pp. 351-379,1998.

  8. Lee, T.-W. and Robinson, D., A Method for Direct Calculations of the Drop Size Distribution and Velocities from the Integral Form of the Conservation Equations, Combust. Sci. Technol., vol. 183, no. 3, pp. 271-284,2011.

  9. Lee, T.-W. and An, K., Quadratic Formula for Determining the Drop Size in Pressure-Atomized Sprays with and without Swirl, Phys. Fluids, vol. 28, p. 063302,2016.

  10. Lee, T.-W., Park, J.E., and Kurose, R., Determination of the Drop Size during Atomization of Liquid Jets in Cross Flows, Atomization Sprays, vol. 28, no. 3, pp. 241-254,2017.

  11. Lee, T.-W. and Park, J.E., Determination of the Drop Size during Air-Blast Atomization, ASME J. Fluids Eng., vol. 141, no. 12, p. 121301,2019.

  12. Lee, T.-W. and Ryu, J.H., Analyses of Spray Break-Up Mechanisms Using the Integral Form of the Con-servation Equations, Combust. TheoryModell., vol. 18, no. 1,pp. 89-100,2014.

  13. Lee, T. -W., Greenlee, B., and Park, J.E., A Computational Protocol for Simulation of Spray Flows Including Primary Atomization, ILASS-Asia, Ube, Japan, December, 2019.

  14. Lee, T.-W. and Lee, J.Y., Momentum Effects on Drop Size, Calculated Using the Integral Form of the Conservation Equations, Combust. Sci. Technol., vol. 184, pp. 434-443,2012.

  15. Lefebvre, A.H. and McDonell, V.G., Atomization Sprays, 2nd ed., Boca Raton, FL: CRC Press, 2017.

  16. Lefebvre, A.H., Gas Turbine Combustion, 2nd ed., Philadelphia, PA: Taylor and Francis, 1999.

  17. Marchione, T., Allouis, C., Amoresano, A., and Beretta, F., Experimental Investigation of a Pressure Swirl Atomizer Spray, J. Propul. Power, vol. 23, no. 5,2007. DOI: 10.2514/1.28513.

  18. Martinez, G.L., Magnotti, G.M., Knox, B.W., Genzale, G.L., Matusik, K.E., Duke, D.J., Powell, C.F., and Kastengren, A.L., Quantification of Sauter Mean Diameter in Diesel Sprays Using Scattering- Absorption Extinction Diesel, ILASS-Americas 29th Annu. Conf. Liquid Atomization and Spray Syst., Atlanta, GA, May 2017.

  19. Mashayek, A., Experimental and Numerical Study of Liquid Jets in Crossflow, MS, University of Toronto, 2006.

  20. Movaghar, A., Linne, M., Herrmann, M., Kerstein, A.R., and Oevermann, M., Modeling and Numerical Study of Primary Breakup under Diesel Conditions, Int. J. Multiphase Flows, vol. 98, pp. 110-119, 2018.

  21. Saeedipour, M., Pirker, S., Bozorgi, S., and Schneiderbauer, S., An Eulerian-Lagrangian Hybrid Model for the Coarse-Grid Simulation of Turbulent Liquid Jet Breakup, Int. J. Multiphase Flows, vol. 82, pp. 17.

  22. Shimizu, M., Arai, M., and Hiroyasu, H., Measurements of Breakup Length in High Speed Jet, Bull. JSME, vol. 27, no. 230, pp. 1709-1715,1984.

  23. Strasser, W. and Battaglia, F., Pulsating Slurry Atomization, Film Thickness, and Azimuthal Instabilities, Atomization Sprays, vol. 28, no. 7, pp. 643-672,2018.

  24. Umemura, A. and Shinjo, J., Detailed SGS Atomization Model and Its Implementation to Two-Phase LES, Combust. Flame, vol. 195, pp. 232-252,2018.


Articles with similar content:

EFFERVESCENT ATOMIZATION FOR INDUSTRIAL ENERGY−TECHNOLOGY REVIEW
Atomization and Sprays, Vol.20, 2010, issue 6
Richard Marsh, Andrew Crayford, Phil J. Bowen, Dancho Konstantinov
ENERGY DISSIPATION FOR BOUNCING DROP
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Harish N Dixit, Praveen K. Sharma
SPRAY ATOMIZATION CHARACTERISTICS OF A LOW PRESSURE ROTARY INJECTOR
Atomization and Sprays, Vol.29, 2019, issue 6
Kushal Ghate, Thirumalachari Sundararajan, Shraddha Sharma
FUNDAMENTAL CONSIDERATIONS FOR COAL SLURRY ATOMIZATION
Atomization and Sprays, Vol.15, 2005, issue 5
John P. Dooher
THE FUTURE OF ENERGY: INESCAPABLE OR MANAGEABLE?
Energy and Environment, 1995, Vol.0, 1995, issue
Leon Bolle