Abonnement à la biblothèque: Guest
Atomization and Sprays

Publication de 12  numéros par an

ISSN Imprimer: 1044-5110

ISSN En ligne: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

THE INFLUENCE OF ECCENTRICITY ON THE PERFORMANCE OF A COAXIAL PREFILMING AIR-ASSIST ATOMIZER

Volume 11, Numéro 1, 2001, pp. 21-33
DOI: 10.1615/AtomizSpr.v11.i1.20
Get accessGet access

RÉSUMÉ

This article presents an experimental analysis of spray development, spray tip penetration, and the macroscopic characteristics of a high-pressure gasoline injector for direct-injected gasoline engine applications. Also, this study deals with microscopic characteristics of the fuel spray, such as mean droplet size, mean velocity, and the instantaneous velocity vector fields in the fuel spray of a high-pressure injector. The spray development, spray penetration, and global spray structure were visualized using a shadowgraph technique. Atomization characteristics of the fuel spray such as mean droplet sizes and mean velocities were measured using the phase Doppler particle analyzer system. In addition, instantaneous velocity vector fields of the fuel spray with time after injection were obtained from cross-correlation particle image velocimetry.
The experimental results obtained provide the effect of injection pressure on the spray behaviors, spray structure, microscopic characteristics of the fuel spray, and the velocity vector fields at different moments after the start of injection. The injection pressure of the fuel is an important factor, which has an effect on the spray development processes involving the spray tip penetration, spray width, and mixing of fuel droplets and ambient air. With an increase in fuel injection pressure, the droplet size decreases, and the location of maximum droplet size appears farther downstream than in the case of low injection pressure. The results of spray visualization show that the counter rotating vortex along the outer edge of the spray surface is observed at a later stage of fuel injection, and it continues until right after the end of fuel injection. The velocity vector fields by particle image velocimetry show detailed flow vectors and spray development processes in the fuel sprays at different elapsed times after the start of injection.

CITÉ PAR
  1. Levy Y., Sherbaum V., Ovcharenko V., Sotsenko Y., Zlochin I., Study and Field Tests of the Novel Low Pressure Fogger System for Industrial Gas Turbine, Journal of Engineering for Gas Turbines and Power, 130, 1, 2008. Crossref

  2. Wozniak Günter, Literatur, in Zerstäubungstechnik, 2003. Crossref

  3. He Wen Zhi, Jiang Zhao Hua, Suo Quan Ling, Analysis of Energy Efficiency of Air in Atomizing Pseudoplastic Liquid Using a Specially Designed Prefilming Airblast Atomizer, Industrial & Engineering Chemistry Research, 42, 13, 2003. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain