Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v1.i23.50
20 pages

A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics

J. H. Critchley
Department of Mechanical, Aeronautical, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
Kurt S. Anderson
Rensselaer Polytechnic Institute, USA

RÉSUMÉ

The method of recursive coordinate reduction (RCR) offers solutions to the forward problem of multibody dynamics at a cost in which the number of operations is linear in both the number of generalized coordinates, n, and the number of independent algebraic constraints, m (e.g., O(n + m)). However, the RCR is presently restricted in applicability (albeit broad) and susceptible to formulation singularities. This article develops two methods for avoiding formulation singularities as well as a recursive general coupled loop solution that extends the RCR to the complete set of multibody systems. Application of these techniques are further illustrated with a special five-bar linkage. The existing RCR coupled with these developments constitute a generalized recursive coordinate reduction method that should be used in place of the traditional "O(n)" constraint technique (truly O(n + nm2 + m3)) for superior O(n + m) computational performance.


Articles with similar content:

EXTENSIONS OF THE TWO-SCALE GENERALIZED FINITE ELEMENT METHOD TO NONLINEAR FRACTURE PROBLEMS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Armando Duarte, Dae-Jin Kim, Varun Gupta
An Algorithm for Nonstochastic Identification of Controlled-Object Parameters
Journal of Automation and Information Sciences, Vol.28, 1996, issue 3-4
Z. Zh. Ametzhanova
Recognition of the Contour Isolated Images by the Modified Probing Method
Journal of Automation and Information Sciences, Vol.32, 2000, issue 2
Alexey N. Roshchina, Rostislav N. Trokhimchuk
ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 3
George N. Karystinos, Keith R. Dalbey
MESHLESS STOCHASTIC SIMULATION OF MICRO-MACROKINETIC THEORY MODELS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 1
Elias Cueto, F. Chinesta, M. Laso