Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i1.100
pages 131-149

Macroscopic Constitutive Law for Mastic Asphalt Mixtures from Multiscale Modeling

Richard Valenta
Centre for Integrated Design of Advances Structures, Czech Technical University in Prague, Thakurova 7, 166 29 Prague 6, Czech Republic
Michal Sejnoha
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic
Jan Zeman
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic; Centre of Excellence IT4Innovations, VSB-TU Ostrava, 17 listopadu 15/2172 708 33 Ostrava-Poruba, Czech Republic

RÉSUMÉ

A well-established framework of an uncoupled hierarchical modeling approach is adopted here for the prediction of macroscopic material parameters of the generalized Leonov constitutive model intended for the analysis of flexible pavements at both moderate and elevated temperature regimes. To that end, a recently introduced concept of a statistically equivalent periodic unit cell is addressed to reflect a real microstructure of mastic asphalt mixtures (MAm). Although mastic properties are derived from an extensive experimental program, the macroscopic properties of MAm are fitted to virtual numerical experiments performed on the basis of first-order homogenization scheme. To enhance feasibility of the solution of the underlying nonlinear problem, a two-step homogenization procedure is proposed. Here, the effective material properties are first found for a mortar phase, a composite consisting of a mastic matrix and a fraction of small aggregates. These properties are then introduced in place of the matrix in actual unit cells to give estimates of the model parameters on macroscale. Comparison to the Mori-Tanaka predictions is also provided suggesting limitations of classical micromechanical models.

RÉFÉRENCES

  1. Abbas, A. R., Papagiannakis, A. T., and Masad, E. A., Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes. DOI: 10.1061/(ASCE)0899-1561(2004)16:2(133)

  2. Aiger, E. G., Pichler, C., and Lackner, R., Bottom-up multiscale modeling of viscoelastic properties of asphalt.

  3. Benveniste, Y., A new approach to the application of mori-tanaka theory in composite materials. DOI: 10.1016/0167-6636(87)90005-6

  4. Beran, M. J., Statistical Continuum Theories. DOI: 10.1119/1.1974326

  5. Bittnar, Z. and Šejnoha, J., Numer. Methods Struct. Eng.

  6. Chaboche, J. L., Kruch, S., Maire, J. F., and Pottier, T., Towards a micromechanics based inelastic and damage modeling of composites. DOI: 10.1016/S0749-6419(00)00056-5

  7. Dai, Q., Saad, M. H., and You, Z., A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture. DOI: 10.1002/nag.520

  8. Dvorak, G. J., Transformation field analysis of inelastic composite materials.

  9. Dvorak, G. J., Bahei-El-Din, Y. A., and Wafa, A. M., Implementation of the transformation field analysis for inelastic composite-materials. DOI: 10.1007/BF00370073

  10. Dvorak, G. J. and Benveniste, Y., On transformation strains and uniform fields in multiphase elastic media. DOI: 10.1098/rspa.1992.0062

  11. Fang, H., Haddock, J. E., White, T. D., and Hand, A. J., On the characterization of flexible pavement rutting using creep model-based finite element analysis. DOI: 10.1016/j.finel.2004.03.002

  12. Fish, J. and Shek, K., Multiscale analysis of large-scale nonlinear structures and materials.

  13. Hashin, Z. and Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity. DOI: 10.1016/0022-5096(62)90004-2

  14. Hill, R., Elastic properties of reinforced solids-some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  15. Huang, B., Mohammad, L. N., and Wathugala, W., Application of temperature dependent viscoplastic hierarchical single surface model for asphalt mixtures. DOI: 10.1061/(ASCE)0899-1561(2004)16:2(147)

  16. Ibrahimbegović, A., Knopf-Lenoir, C., Kučerová, A., and Villon, P., Optimal design and optimal control of structures undergoing finite rotations and elastic deformations. DOI: 10.1002/nme.1150

  17. Kouznetsova, V., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. DOI: 10.1002/nme.541

  18. Kučerová, A., Identification of nonlinear mechanical model parameters based on softcomputing methods.

  19. Kučerová, A., Lepš, M., and Zeman, J., Back analysis of microplane model parameters using soft computing methods.

  20. Lackner, R., Blab, R., Eberhardsteiner, J., and Mang, H., Characterization and multiscale modeling of asphalt-recent developments in upscaling of viscous and strength properties. DOI: 10.1007/1-4020-5370-3_26

  21. Lackner, R., Blab, R., Jager, A., Spiegl, M., Kappl, K., Wistuba, M., Gagliano, B., and Eberhardsteiner, J., Multiscale modeling as the basis for reliable predictions of the behaviour of multi-composed materials. DOI: 10.4203/csets.12.8

  22. Lackner, R., Spiegl, M., Blab, R., and Eberhardsteiner, J., Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? - Arguments from multiscale analysis. DOI: 10.1061/(ASCE)0899-1561(2005)17:5(485)

  23. Leonov, A. I., Non-equilibrium thermodynamics and rheology of viscoelastic polymer media.

  24. Masad, E., Tashman, L., Little, D., and Zbib, H., Viscoplastic modelling of asphalt mixes with effects of anisotropy. DOI: 10.1016/j.mechmat.2005.06.003

  25. Matouš, K., Lepš, M., Zeman, J., and Šejnoha, M., Applying genetic algorithms to selected topics commonly encountered in engineering practice. DOI: 10.1016/S0045-7825(00)00192-4

  26. Michel, J. C., Moulinec, H., and Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. DOI: 10.1016/S0045-7825(98)00227-8

  27. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of elastic materials with misfitting inclusions. DOI: 10.1016/0001-6160(73)90064-3

  28. Moulinec, H. and Suquet, P., Micromechanics of materials: from numerical simulations to predictive models.

  29. Mura, T., Micromechanics of Defects in Solids. DOI: 10.1115/1.3176116

  30. Panoskaltsis, V. P. and Panneerselvam, D., An anisotropic hyperelastic-viscoplastic damage model for asphalt concrete materials and its numerical implementation.

  31. Papagiannakis, A. T., Abbas, A. R., and Masad, E. A., Microemchanical analysis of viscoelastic properties using image analysis.

  32. Read, J. and Whiteoak, D., The Shell Bitumen Handbook. DOI: 10.1680/sbh.32200

  33. Sousa, J. B., and Weissman, S. L., Modeling permanent deformation of asphalt concrete mixtures.

  34. Sousa, J. B., Weissman, S. L., Sackman, J., and Monismith, C. L., Nonlinear elastic viscous with damage model to predict permanent deformation of asphalt concrete mixes.

  35. Tervoort, T. A., Constitutive Modeling of Polymer Glasses: Finite.

  36. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties. DOI: 10.1115/1.1483342

  37. Šejnoha, J., Šejnoha, M., Zeman, J., Sýkora, J., and Vorel, J., Mesoscopic study on historic masonry.

  38. Šejnoha, M. and Valenta, R., Epoxy resin as a bonding agent in polymer matrix composites: material properties and numerical implementation.

  39. Šejnoha, M., Valenta, R., and Zeman, J., Nonlinear viscoelastic analysis of statistically homogeneous random composites. DOI: 10.1615/IntJMultCompEng.v2.i4.80

  40. Šejnoha, M. and Zeman, J., Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements. DOI: 10.1016/S0045-7825(02)00433-4

  41. Weissman, S. L., Sackman, J. L., Harvey, J. T., and Guada, I., A Constitutive law for asphalt concrete mixes formulated within the realm of large strains.

  42. Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites. DOI: 10.1016/0022-5096(77)90022-9

  43. You, Z., Adhikari, S., and Kutay, M. E., Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images. DOI: 10.1617/s11527-008-9408-4

  44. Zeman, J. and Šejnoha, M., Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. DOI: 10.1016/S0022-5096(00)00027-2

  45. Zeman, J. and Šejnoha, M., From random microstructures to representative volume elements. DOI: 10.1088/0965-0393/15/4/S01


Articles with similar content:

Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
EFFECTIVE THERMOELASTIC PROPERTIES OF POLYSILOXANE MATRIX-BASED PLAIN WEAVE TEXTILE COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
Michal Sejnoha, Jan Vorel, Edith Grippon
HEAT TRANSFER IN PACKED BEDS AT BOTH PORE SCALE AND MACROSCOPIC LEVEL
International Heat Transfer Conference 9, Vol.5, 1990, issue
Michel Quintard, Michel Combarnous, Gilbert Grangeot
Finite Strain Micromechanical Modeling of Multiphase Composites
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Jacob Aboudi
VALIDATION OF A PROBABILISTIC MODEL FOR MESOSCALE ELASTICITY TENSOR OF RANDOM POLYCRYSTALS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Arash Noshadravan, Roger Ghanem, Pedro Peralta, Johann Guilleminot, Ikshwaku Atodaria