Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Multiscale Finite Elements for Acoustics: Continuous, Discontinuous, and Stabilized Methods

Volume 6, Numéro 6, 2008, pp. 511-531
DOI: 10.1615/IntJMultCompEng.v6.i6.20
Get accessGet access

RÉSUMÉ

This work describes two perspectives for understanding the numerical difficulties that arise in the solution of wave problems, and various advances in the development of efficient discretization schemes for acoustics. Standard, low-order, continuous Galerkin finite element methods are unable to cope with wave phenomena at short wave lengths because the computational effort required to resolve the waves and control numerical dispersion errors becomes prohibitive. The failure to adequately represent subgrid scales misses not only the fine-scale part of the solution, but often causes severe pollution of the solution on the resolved scale as well. Since computation naturally separates the scales of a problem according to the mesh size, multi-scale considerations provide a useful framework for viewing these difficulties and developing methods to counter them. The Galerkin/least squares method arises in multiscale settings, and its stability parameter is defined by dispersion considerations. Bubble enriched methods employ auxiliary functions that are usually expressed in the form of infinite series. Dispersion analysis provides guidelines for the implementation of the series representation in practice. In the discontinuous enrichment method, the fine scales are spanned by free-space homogeneous solutions of the governing equations. These auxiliary functions may be discontinuous across element boundaries, and continuity is enforced weakly by Lagrange multipliers.

RÉFÉRENCES
  1. Zienkiewicz, O. C., Achievements and Some Unsolved Problems of the Finite Element Method. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P

  2. Babuka, I., Ihlenburg, F., Paik, E. T., and Sauter, S. A., A Generalized Finite Element Method for Solving the Helmholtz Equation in Two Dimensions with Minimal Pollution. DOI: 10.1016/0045-7825(95)00890-X

  3. Ihlenburg, F., Finite Element Analysis of Acoustic Scattering.

  4. Chertock, G., Integral Equation Methods in Sound Radiation and Scattering from Arbitrary Structures.

  5. Kleinman, R. E. and Roach, G. F., Boundary Integral Equations for the Three-Dimensional Helmholtz Equation. DOI: 10.1137/1016029

  6. Shaw, R. P., Integral Equation Methods in Acoustics.

  7. Burnett, D. S., A Three-Dimensional Acoustic Infinite Element Based on a Prolate Spheroidal Multipole Expansion. DOI: 10.1121/1.411286

  8. Harari, I. and Hughes, T. J. R., A Cost Comparison of Boundary Element and Finite Element Methods for Problems of Time-Harmonic Acoustics. DOI: 10.1016/0045-7825(92)90108-V

  9. Chen, J.-T. and Chen, K.-H., Applications of the Dual Integral Formulation in Conjunction with Fast Multipole Method in Large-Scale Problems for 2D Exterior Acoustics. DOI: 10.1016/S0955-7997(03)00122-X

  10. Greengard, L., Huang, J., Rokhlin, V., and Stephen,W., Accelerating Fast Multipole Methods for the Helmholtz Equation at Low Frequencies. DOI: 10.1109/99.714591

  11. Franca, L. P. and Dutra do Carmo, E. G., The Galerkin Gradient Least-Squares Method. DOI: 10.1016/0045-7825(89)90085-6

  12. Harari, I. and Hughes, T. J. R., Galerkin/Least- Squares Finite Element Methods for the Reduced Wave Equation with Nonreflecting Boundary Conditions in Unbounded Domains. DOI: 10.1016/0045-7825(92)90006-6

  13. Givoli, D., Non-Local and Semi-Local Optimal Weighting Functions for Symmetric Problems Involving a Small Parameter. DOI: 10.1002/nme.1620260605

  14. Demkowicz, L. and Oden, J. T., An Adaptive Characteristic Petrov-Galerkin Finite Element Method for Convection-Dominated Linear and Nonlinear Parabolic Problems in Two Space Variables. DOI: 10.1016/0021-9991(86)90121-X

  15. Barbone, P. E. and Harari, I., Nearly H<sup>1</sup> &mdash; Optimal Finite Element Methods. DOI: 10.1016/S0045-7825(01)00191-8

  16. Hughes, T. J. R., Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods. DOI: 10.1016/0045-7825(95)00844-9

  17. Hughes, T. J. R., Feijoo, G. R., Mazzei, L., and Quincy, J.-B., The Variational Multiscale Method &mdash; A Paradigm for Computational Mechanics. DOI: 10.1016/S0045-7825(98)00079-6

  18. Franca, L. P. and Farhat, C., Bubble Functions Prompt Unusual Stabilized Finite Element Methods. DOI: 10.1016/0045-7825(94)00721-X

  19. Brezzi, F., Bristeau, M. O., Franca, L. P., Mallet, M., and Roge, G., A Relationship between Stabilized Finite Element Methods and the Galerkin Method with Bubble Functions. DOI: 10.1016/0045-7825(92)90102-P

  20. Brezzi, F. and Russo, A., Choosing Bubbles for Advection-Diffusion Problems. DOI: 10.1142/S0218202594000327

  21. Brezzi, F., Franca, L. P., and Russo, A., Further Considerations on Residual-Free Bubbles for Advective-Diffusive Equations. DOI: 10.1016/S0045-7825(98)00080-2

  22. Franca, L. P., Farhat, C., Macedo, A. P., and Lesoinne, M., Residual-Free Bubbles for the Helmholtz Equation. DOI: 10.1002/(SICI)1097-0207(19971115)40:21<4003::AID-NME199>3.0.CO;2-Z

  23. Franca, L. P., Nesliturk, A., and Stynes, M., On the Stability of Residual-Free Bubbles for Convection-Diffusion Problems and Their Approximation by a Two-Level Finite Element method. DOI: 10.1016/S0045-7825(98)00081-4

  24. Brezzi, F., Franca, L. P., Hughes, T. J. R., and Russo, A., <i>b</i> = &int; <i>g. Comput. Methods Appl. Mech. Eng.</i>.

  25. Franca, L. P., Madureira, A. L., and Valentin, F, Towards Multiscale Functions: Enriching Finite Element Spaces with Local but Not Bubble-Like Functions. DOI: 10.1016/j.cma.2004.07.029

  26. Hou, T. Y. and Wu, X.-H., A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media. DOI: 10.1006/jcph.1997.5682

  27. Hughes, T. J. R. and Sangalli, G., Variational Multiscale Analysis: The Fine-Scale Green’s Function, Projection, Optimization, Localization, and Stabilized Methods. DOI: 10.1137/050645646

  28. Franca, L. P., Frey, S. L., and Hughes, T. J. R., Stabilized Finite Element Methods. I. Application to the Advective-Diffusive Model. DOI: 10.1016/0045-7825(92)90143-8

  29. Franca, L. P. and Valentin, F., On an Improved Unusual Stabilized Finite Element Method for the Advective-Reactive-Diffusive Equation. DOI: 10.1016/S0045-7825(00)00190-0

  30. Harari, I. and Magoules, F., Numerical Investigations of Stabilized Finite Element Computations for Acoustics. DOI: 10.1016/j.wavemoti.2003.12.001

  31. Thompson, L. L. and Pinsky, P. M., A Galerkin Least-Squares Finite Element Method for the Two-Dimensional Helmholtz Equation. DOI: 10.1002/nme.1620380303

  32. Stewart, J. R. and Hughes, T. J. R., <i>h</i>-Adaptive Finite Element Computation of Time-Harmonic Exterior Acoustics Problems in Two Dimensions. DOI: 10.1016/S0045-7825(96)01225-X

  33. Kechroud, R., Soulaimani, A., Saad, Y., and Gowda, S., Preconditioning Techniques for the Solution of the Helmholtz Equation by the Finite Element Method. DOI: 10.1016/j.matcom.2004.01.004

  34. Oberai, A. A. and Pinsky, P. M., A Residual-Based Finite Element Method for the Helmholtz Equation. DOI: 10.1002/1097-0207(20000930)49:3<399::AID-NME844>3.0.CO;2-5

  35. Harari, I. and Hughes, T. J. R., Finite Element Methods for the Helmholtz Equation in an Exterior Domain: Model Problems. DOI: 10.1016/0045-7825(91)90146-W

  36. Harari, I., Finite Element Dispersion of Cylindrical and Spherical Acoustic Waves. DOI: 10.1016/S0045-7825(00)00251-6

  37. Cherukuri, H. P., Dispersion Analysis of Numerical Approximations to Plane Wave Motions in an Isotropic Elastic Solid. DOI: 10.1007/s004660050480

  38. Christon, M. A., The Influence of the Mass Matrix on the Dispersive Nature of the Semi- Discrete, Second-Order Wave Equation. DOI: 10.1016/S0045-7825(98)00266-7

  39. Christon, M. A. and Voth, T. E., Results of von Neumann Analyses for Reproducing Kernel Semi-Discretizations. DOI: 10.1002/(SICI)1097-0207(20000310)47:7<1285::AID-NME823>3.0.CO;2-3

  40. Deraemaeker, A., Babuska, I., and Bouillard, P., Dispersion and Pollution of the FEM Solution for the Helmholtz Equation in One, Two and Three Dimensions. DOI: 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6

  41. Harari, I., Reducing Spurious Dispersion, Anisotropy and Reflection in Finite Element Analysis of Time-Harmonic Acoustics. DOI: 10.1016/S0045-7825(96)01034-1

  42. Krenk, S., Optimal Formulation of Simple Finite Elements.

  43. Mullen, R. and Belytschko, T., Dispersion Analysis of Finite Element Semidiscretizations of the Two-Dimensional Wave Equation. DOI: 10.1002/nme.1620180103

  44. Oberai, A. A. and Pinsky, P. M., A Numerical Comparison of Finite Element Methods for the Helmholtz Equation. DOI: 10.1142/S0218396X00000133

  45. Harari, I. and Nogueira, C. L., Reducing Dispersion of Linear Triangular Elements for the Helmholtz Equation. DOI: 10.1061/(ASCE)0733-9399(2002)128:3(351)

  46. Lacroix, V., Bouillard, P., and Villon, P, An Iterative Defect-Correction Type Meshless Method for Acoustics. DOI: 10.1002/nme.757

  47. Magoules, F., Meerbergen, K., and Coyette, J.-P., Application of a Domain Decomposition Method with Lagrange Multipliers to Acoustic Problems Arising from the Automotive Industry. DOI: 10.1142/S0218396X00000297

  48. Harari, I. and Gosteev, K., Bubble-Based Stabilization for the Helmholtz Equation. DOI: 10.1002/nme.1930

  49. Strouboulis, T., Babuska, I., and Copps, K., The Design and Analysis of the Generalized Finite Element Method. DOI: 10.1016/S0045-7825(99)00072-9

  50. Melenk, J. M. and Babuska, I., The Partition of Unity Method Finite Element Method: Basic Theory and Applications. DOI: 10.1016/S0045-7825(96)01087-0

  51. Laghrouche, O. and Bettess, P., Short Wave Modelling Using Special Finite Elements. DOI: 10.1142/S0218396X00000121

  52. Goldstein, C. I., TheWeak Element Method Applied to Helmholtz Type Equations. DOI: 10.1016/0168-9274(86)90043-7

  53. Cessenat, O. and Despres, B., Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem. DOI: 10.1137/S0036142995285873

  54. Monk, P. and Wang, D.-Q., A Least-Squares Method for the Helmholtz Equation. DOI: 10.1016/S0045-7825(98)00326-0

  55. Ladeveze, P., Arnaud, L., Rouch, P., and Blanze, C., The Variational Theory of Complex Rays for the Calculation of Medium-Frequency Vibrations. DOI: 10.1108/02644400110365879

  56. Stojek, M., Least-Squares Trefftz-Type Elements for the Helmholtz Equation. DOI: 10.1002/(SICI)1097-0207(19980315)41:5<831::AID-NME311>3.0.CO;2-V

  57. Cessenat, O. and Despres, B., Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation. DOI: 10.1142/S0218396X03001912

  58. van Hal, B., Desmet, W., Vandepitte, D., and Sas, P., A Coupled Finite Element-Wave Based Approach for the Steady-State Dynamic Analysis of Acoustic Systems. DOI: 10.1142/S0218396X03001948

  59. Alvarez, G. B., Loula, A. F. D., Dutra do Carmo, E. G., and Rochinha, F. A., A Discontinuous Finite Element Formulation for Helmholtz Equation. DOI: 10.1016/j.cma.2005.07.013

  60. Farhat, C., Harari, I., and Franca, L. P., The Discontinuous Enrichment Method. DOI: 10.1016/S0045-7825(01)00232-8

  61. Farhat, C., Harari, I., and Hetmaniuk, U., The Discontinuous Enrichment Method for Multiscale Analysis. DOI: 10.1016/S0045-7825(03)00344-X

  62. Zhang, L., Tezaur, R., and Farhat, C., The Discontinuous Enrichment Method for Elastic Wave Propagation in the Medium-Frequency Regime. DOI: 10.1002/nme.1619

  63. Massimi, P., Tezaur, R., and Farhat, C., A Discontinuous Enrichment Method for Three- Dimensional Multiscale Harmonic Wave Propagation Problems in Multi-Fluid and Fluid-Solid Media. DOI: 10.1002/nme.2334

  64. Tezaur, R., Zhang, L., and Farhat, C., A Discontinuous Enrichment Method for Capturing Evanescent Waves in Multiscale Fluid and Fluid/Solid Problems. DOI: 10.1016/j.cma.2007.08.023

  65. Grosu, E. and Harari, I., Studies of the discontinuous enrichment method for twodimensional acoustics. DOI: 10.1016/j.finel.2007.11.016

  66. Gabard, G., Exact Integration of Polynomial- Exponential Products with Application to Wave-Based Numerical Methods. DOI: 10.1002/cnm.1123

  67. Grosu, E. and Harari, I., Three-dimensional Element Configurations for the Discontinuous Enrichment Method for Acoustics. DOI: 10.1002/nme.2525

  68. Farhat, C., Harari, I., and Hetmaniuk, U., ADiscontinuous Galerkin Method with Lagrange Multipliers for the Solution of Helmholtz Problems in the Mid-Frequency Regime. DOI: 10.1016/S0045-7825(02)00646-1

  69. Farhat, C., Tezaur, R., and Weidemann- Goiran, P., Higher-Order Extensions of a Discontinuous Galerkin Method for Mid- Frequency Helmholtz Problems. DOI: 10.1002/nme.1139

  70. Harari, I., Tezaur, R., and Farhat, C., A Study of Higher-Order Discontinuous Galerkin and Quadratic Least-Squares Stabilized Finite Element Computations for Acoustics. DOI: 10.1142/S0218396X06002792

  71. Tezaur, R. and Farhat, C., Three-Dimensional Discontinuous Galerkin Elements with Plane Waves and Lagrange Multipliers for the Solution of Mid-Frequency Helmholtz Problems. DOI: 10.1002/nme.1575

  72. Huttunen, T., Seppala, E. T., Kirkeby, O., Karkkainen, A., and Karkkainen, L., Simulation of the Transfer Function for a Head-and-Torso Model over the Entire Audible Frequency Range. DOI: 10.1142/S0218396X07003469

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain