Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v3.i1.50
pages 59-70

Numerical Assessment of Theoretical Error Estimates in Coarse-Grained Kinetic Monte Carlo Simulations: Application to Surface Diffusion

Abhijit Chatterjee
Department of Chemical Engineering Center for Catalytic Science and Technology (CCST), University of Delaware, Newark, DE 19716
Dionisios G. Vlachos
Department of Chemical Engineering Center for Catalytic Science and Technology (CCST), University of Delaware, Newark, DE 19716-3110
Markos A. Katsoulakis
Department of Mathematics and Statistics University of Massachusetts, Amherst, MA 01003

RÉSUMÉ

A coarse-grained kinetic Monte Carlo (CG-KMC) method was recently introduced as a hierarchical multiscale modeling tool for extending the length scales reached by stochastic simulations. Coarse-graining causes errors due to loss of degrees of freedom. To quantify these errors, theoretical error estimates derived using information loss theory are first presented. Simulations are subsequently carried out in the canonical ensemble for various combinations of key parameters suggested by theoretical estimates. Numerically evaluated errors are compared to theoretical error estimates to assess whether the latter can qualitatively capture the loss of information during coarse-graining. Finally, a standing wave example is presented to illustrate how these error estimates can be used to control accuracy in CG-KMC by employing adaptive meshes.


Articles with similar content:

IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Ghonwa Khaddour, SeonHong Na, Simon Salager, Kun Wang, WaiChing Sun
A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Miroslav Stoyanov, Clayton G. Webster
A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING EVIDENCE THEORY AND STOCHASTIC EXPANSIONS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Tyler Winter, Serhat Hosder, Harsheel Shah
A STOCHASTIC INVERSE PROBLEM FOR MULTISCALE MODELS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 3
N. Panda, Lindley Graham, Clint Dawson, Troy Butler, Donald Estep
Analysis of Signals in Adaptive Basis with Shifted Argument
Journal of Automation and Information Sciences, Vol.39, 2007, issue 5
Inna D. Ponomareva