Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002688
pages 623-634

DETERMINATION OF NONLOCAL CONSTITUTIVE EQUATIONS FROM PHONON DISPERSION RELATIONS

Olaf Weckner
The Boeing Company, P.O. Box 3707, MC 42-26, Seattle, Washington, 98124-2207, USA
Stewart A. Silling
Multiscale Dynamic Material Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico,87185, USA

RÉSUMÉ

All materials exhibit wave dispersion at "small" wavelengths leading to non-linearities in experimentally determined dispersion curves. Classical local elasticity fails to predict these non-linearities. Nonlocal continuum mechanics allows for the prediction of the elastic behavior over a considerably wider range of lengthscales. Starting from ab initio lattice dynamics calculations we determine the elastic constants and the phonon dispersion relation for silicon. We verify our results using inelastic neutron scattering data. Next we develop the theoretical and numerical framework to construct nonlocal constitutive equations for longitudinal and transverse acoustic modes.

RÉFÉRENCES

  1. Brockhouse, B. N., Arase, T., Caglioti, G., Rao, K. R., and Woods, A. D. B., Crystal dynamics of lead i-dispersion curves at 100 k. DOI: 10.1103/PhysRev.128.1099

  2. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., and Payne, M. C., First principles methods using Castep. DOI: 10.1524/zkri.220.5.567.65075

  3. Emmrich, E. and Weckner, O., Analysis and numerical approximation of an integro-differential equation modelling non-local effects in linear elasticity. DOI: 10.1177/1081286505059748

  4. Emmrich, E. and Weckner, O., On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity.

  5. Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves. DOI: 10.1016/0020-7225(72)90050-X

  6. Eringen, A. C., Vistas of nonlocal continuum physics. DOI: 10.1016/0020-7225(92)90165-D

  7. Eringen, A. C., Nonlocal Continuum Field Theories.

  8. Eringen, A. C. and Edelen, D. G. B., On nonlocal elasticity. DOI: 10.1016/0020-7225(72)90039-0

  9. Graff, K. F., Wave Motionin Elastic Solids.

  10. Jakata, K. and Every, A. G., Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs, and InSb. DOI: 10.1103/PhysRevB.77.174301

  11. Kunin, I. A., Elastic Media with Microstructure.

  12. Maranganti, R. and Sharma, P., A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. DOI: 10.1016/j.jmps.2007.02.011

  13. Mindlin, R. S., Second gradient of strain and surface-tension in linear elasticity. DOI: 10.1016/0020-7683(65)90006-5

  14. Raunio, G. and Rolandson, S., Phonon dispersion relations in RbCl and RbF at 80 K. DOI: 10.1088/0022-3719/3/5/016

  15. Rogula, D., Nonlocal Theory of Material Media.

  16. Seleson, P., Parks, M. L., Gunzburger, M., and Lehoucq, R., Peridynamics as an upscaling of molecular dynamics. Multiscale Modeling and Simulation. DOI: 10.1137/09074807X

  17. Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces. DOI: 10.1016/S0022-5096(99)00029-0

  18. Silling, S. A., Linearized theory of peridynamic states. DOI: 10.1007/s10659-009-9234-0

  19. Silling, S. A., A coarsening method for linear peridynamics.

  20. Silling, S. A. and Lehoucq, R. B., Convergence of peridynamics to classical elasticity theory. DOI: 10.1007/s10659-008-9163-3

  21. Silling, S. A., Epton, M., Weckner, O., Xu, J., and Askari, E., Peridynamics states and constitutive modeling. DOI: 10.1007/s10659-007-9125-1

  22. Tricomi, F. G., Integral Equations.

  23. Weckner, O. and Abeyaratne, R., The effect of long-range forces on the dynamics of a bar. DOI: 10.1016/j.jmps.2004.08.006

  24. Weckner, O., Brunk, G., Epton, M., Silling, S., and Askari, E., Greens functions in non-local three-dimensional linear elasticity. DOI: 10.1098/rspa.2009.0234


Articles with similar content:

Full Band Monte Carlo Simulation of Phonon Transport in Semiconductor Nanostructures
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Z. Aksamija
THERMAL CONDUCTIVITY OF SINGLE WALL CARBON NANOTUBES: A COMPARISON OF MOLECULAR DYNAMICS SIMULATION APPROACHES
International Heat Transfer Conference 13, Vol.0, 2006, issue
Jennifer R. Lukes, H. Zhong
Thermomass-Based General Law for Ballistic-Diffusive Heat Conduction in Nanostructures
International Heat Transfer Conference 15, Vol.8, 2014, issue
Yu-Chao Hua, Bing-Yang Cao
ASYMPTOTIC SIMILARITY STATES OF UNSTABLY STRATIFIED HOMOGENEOUS TURBULENCE
TSFP DIGITAL LIBRARY ONLINE, Vol.9, 2015, issue
Claude Cambon, Alan Burlot, Benoıt-Joseph Grea, Fabien S. Godeferd
BIFURCATIONS OF RADIATIVE-CONDUCTIVE TEMPERATURE WAVES
International Heat Transfer Conference 10, Vol.3, 1994, issue
Andrei V. Galaktionov