Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002619
pages 529-542

THE MATCHED ASYMPTOTIC EXPANSION FOR THE COMPUTATION OF THE EFFECTIVE BEHAVIOR OF AN ELASTIC STRUCTURE WITH A THIN LAYER OF HOLES

Giuseppe Geymonat
Université Montpellier II, LMGC, UMR-CNRS 5508, Case Courier 048, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Francoise Krasucki
Université Montpellier 2, I3M, UMR-CNRS 5149, Case Courier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Sofiane Hendili
Université Montpellier 2, I3M, UMR-CNRS 5149, Case Courier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5; EPIMACS, INRIA Rocquencourt
Marina Vidrascu
EPIMACS, INRIA Rocquencourt

RÉSUMÉ

In the framework of matched asymptotic expansions we introduce a new efficient and robust method to approximate the behavior of a structure containing a thin layer with periodically distributed micro-holes. A surface (in three dimensions) or a line (in two dimensions), on which particular jumping conditions are defined, substitutes for the initial problem.

RÉFÉRENCES

  1. Abdelmoula, R. and Marigo, J. J., The effective behavior of a fiber bridged crack. DOI: 10.1016/S0022-5096(00)00003-X

  2. Bellieud, M., Geymonat, G., Krasucki, F., and Michaille, G., in preparation.

  3. Bensoussan, A., Lions, J. L., and Papanicolaou, G., Asymptotic Analysis for Periodic Structures.

  4. Forte, S. and Vianello, M., Symmetry classes for elasticity tensors. DOI: 10.1007/BF00042505

  5. François, M., Geymonat, G., and Berthaud, Y., Determination of the symmetries of an experimentally determined stiffness tensor: Application to acoustic measurements. DOI: 10.1016/S0020-7683(97)00303-X

  6. Golubitsky, M., Stewart, I., and Schaeffer, D. G., Singularities and Groups in Bifurcation Theory.

  7. Marigo, J. J. and Pideri, C., The effective behavior of elastic bodies containing microcracks or microholes localized on a surface. DOI: 10.1177/1056789511406914

  8. Nguetseng, G. and Sanchez-Palencia, E., Stress concentration for defects distributed near a surface.

  9. Sanchez-Hubert, J. and Sanchez-Palencia, E., Vibration and Coupling of Continuous Systems: Asymptotic Methods.

  10. Sanchez-Palencia, E., Nonhomogeneous Media and Vibration Theory.