Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

NON-LOCAL COMPUTATIONAL HOMOGENIZATION OF PERIODIC MASONRY

Volume 9, Numéro 5, 2011, pp. 565-578
DOI: 10.1615/IntJMultCompEng.2011002017
Get accessGet access

RÉSUMÉ

Micro-polar and second-order homogenization procedures for periodic elastic masonry have been implemented to include geometric and material length scales in the constitutive equation. From the evaluation of the numerical response of the unit cell representative of the masonry to properly prescribed displacement boundary conditions related to homogeneous macro-strain fields, the elastic moduli of the higher-order continua are obtained on the basis of an extended Hill-Mandel macro-homogeneity condition. Elastic moduli and internal lengths for the running bond masonry are obtained in the case of Cosserat and second-order homogenization. To evaluate these results, a shear layer problem representative of a masonry wall subjected to a uniform horizontal displacement at points on the top is analyzed as a micro-polar and a second-order continuum and the results are compared to those corresponding with the reference heterogeneous model. From this analysis the second-order homogenization appears to provide better results in comparison with the micro-polar homogenization.

RÉFÉRENCES
  1. Bakhvalov, N. S. and Panasenko, G. P., Homogenization: Averaging Processes in Periodic Media.

  2. Boutin, C., Micro-structural effects in elastic composites. DOI: 10.1016/0020-7683(95)00089-5

  3. Bouyge, F., Jasiuk, I., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic two-phase composite. DOI: 10.1016/S0020-7683(00)00132-3

  4. Bouyge, F., Jasiuk, I., Boccara, S., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. DOI: 10.1016/S0997-7538(01)01192-5

  5. Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. DOI: 10.1016/j.ijsolstr.2005.03.037

  6. Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  7. Forest, S. and Sab, K., Cosserat overall modeling of heterogeneous materials. DOI: 10.1016/S0093-6413(98)00059-7

  8. Gambarotta, L. and Bacigalupo, A., Cosserat homogenization of elastic periodic blocky masonry.

  9. Germain, P., The method of virtual power in continuum mechanics. Part 2: Microstructure. DOI: 10.1137/0125053

  10. Kaczmarczyk, L., Pearce, C., and Bićanić, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. DOI: 10.1002/nme.2188

  11. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  12. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  13. Mistler, M., Anthoine, A., and Butenweg, C., In-plane and out-of-plane homogenisation of masonry. DOI: 10.1016/j.compstruc.2006.08.087

  14. Peerlings, R. H. J. and Fleck, N. A., Computational evaluation of strain gradient elasticity constants. DOI: 10.1615/IntJMultCompEng.v2.i4.60

  15. Salerno, G. and de Felice, G., Continuum modeling of periodic brickwork. DOI: 10.1016/j.ijsolstr.2008.10.034

  16. Smyshlyaev, V. P. and Cherednichenko, K. D., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. DOI: 10.1016/S0022-5096(99)00090-3

  17. Sulem, J. and Mühlhaus, H. B., A continuum model for periodic two-dimensional block structures. DOI: 10.1002/(SICI)1099-1484(199701)2:1<31::AID-CFM24>3.0.CO;2-O

  18. Triantafyllidis, N. and Bardenhagen, S., The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. DOI: 10.1016/0022-5096(96)00047-6

  19. Trovalusci, P. and Masiani, R., A multifield model for blocky materials based on multiscale description. DOI: 10.1016/j.ijsolstr.2005.03.027

  20. Van der Sluis, O., Vosbeek, P. H. J., Schreurs, P. J. G., and Meijer, H. E. H., Homogenization of heterogeneous polymers. DOI: 10.1016/S0020-7683(98)00144-9

CITÉ PAR
  1. Bacigalupo Andrea, Gambarotta Luigi, Computational two-scale homogenization of periodic masonry: Characteristic lengths and dispersive waves, Computer Methods in Applied Mechanics and Engineering, 213-216, 2012. Crossref

  2. Milani G., Cecchi A., Compatible model for herringbone bond masonry: Linear elastic homogenization, failure surfaces and structural implementation, International Journal of Solids and Structures, 50, 20-21, 2013. Crossref

  3. Trovalusci Patrizia, Pau Annamaria, Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua, Acta Mechanica, 225, 1, 2014. Crossref

  4. Trovalusci Patrizia, Ostoja-Starzewski Martin, De Bellis Maria Laura, Murrali Agnese, Scale-dependent homogenization of random composites as micropolar continua, European Journal of Mechanics - A/Solids, 49, 2015. Crossref

  5. Bacigalupo Andrea, Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits, Meccanica, 49, 6, 2014. Crossref

  6. Favata Antonino, Trovalusci Patrizia, Masiani Renato, A multiphysics and multiscale approach for modeling microcracked thermo-elastic materials, Computational Materials Science, 116, 2016. Crossref

  7. Cheng Z.B., Xu Y.G., Zhang L.L., Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature element method, International Journal of Mechanical Sciences, 100, 2015. Crossref

  8. Como Mario, Virtual displacements principle, existence and uniqueness for elastic no tension bodies, Meccanica, 52, 6, 2017. Crossref

  9. Greco Fabrizio, Leonetti Lorenzo, Luciano Raimondo, Nevone Blasi Paolo, An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material, Composite Structures, 153, 2016. Crossref

  10. Matouš Karel, Geers Marc G.D., Kouznetsova Varvara G., Gillman Andrew, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, 330, 2017. Crossref

  11. Bacigalupo Andrea, Gambarotta Luigi, Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces, Journal of the Mechanics and Physics of Solids, 102, 2017. Crossref

  12. Geers Marc G. D., Kouznetsova Varvara G., Matouš Karel, Yvonnet Julien, Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics Second Edition, 2017. Crossref

  13. Utzig Lukas, Karch Christian, Rehra Jan, Hannemann Benedikt, Schmeer Sebastian, Modeling and simulation of the effective strength of hybrid polymer composites reinforced by carbon and steel fibers, Journal of Materials Science, 53, 1, 2018. Crossref

  14. Geers Marc G. D., Kouznetsova Varvara G., Matouš Karel, Yvonnet Julien, Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics Second Edition, 2017. Crossref

  15. Como Mario, Fundamentals of Statics of Masonry Solids and Structures, in Statics of Historic Masonry Constructions, 5, 2016. Crossref

  16. Cheng Zhibao, Lin Wenkai, Shi Zhifei, Wave dispersion analysis of multi-story frame building structures using the periodic structure theory, Soil Dynamics and Earthquake Engineering, 106, 2018. Crossref

  17. Como Mario, Fundamentals of Statics, in Statics of Historic Masonry Constructions, 9, 2017. Crossref

  18. Nino Simona Di, Luongo Angelo, A simple homogenized orthotropic model for in-plane analysis of regular masonry walls, International Journal of Solids and Structures, 167, 2019. Crossref

  19. Leonetti Lorenzo, Fantuzzi Nicholas, Trovalusci Patrizia, Tornabene Francesco, Scale Effects in Orthotropic Composite Assemblies as Micropolar Continua: A Comparison between Weak- and Strong-Form Finite Element Solutions, Materials, 12, 5, 2019. Crossref

  20. Como Mario, Fundamentals of Statics of Masonry Solids and Structures, in Statics of Historic Masonry Constructions, 1, 2013. Crossref

  21. Fantuzzi Nicholas, Trovalusci Patrizia, Dharasura Snehith, Mechanical Behavior of Anisotropic Composite Materials as Micropolar Continua, Frontiers in Materials, 6, 2019. Crossref

  22. Baraldi Daniele, De Carvalho Bello Claudia Brito, Cecchi Antonella, Ubertini Filippo, Refined Rigid Block Model for In-Plane Loaded Masonry, Advances in Civil Engineering, 2020, 2020. Crossref

  23. Raju Karthikayen, Tay Tong-Earn, Tan Vincent Beng Chye, A review of the FE2 method for composites, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4, 1, 2021. Crossref

  24. Bacigalupo Andrea, Gambarotta Luigi, Lepidi Marco, Thermodynamically consistent non-local continualization for masonry-like systems, International Journal of Mechanical Sciences, 205, 2021. Crossref

  25. Pantò B., Macorini L., Izzuddin B. A., A two-level macroscale continuum description with embedded discontinuities for nonlinear analysis of brick/block masonry, Computational Mechanics, 69, 3, 2022. Crossref

  26. Bacigalupo A., Morini L., Piccolroaz A., Overall thermomechanical properties of layered materials for energy devices applications, Composite Structures, 157, 2016. Crossref

  27. Bacigalupo A., Morini L., Piccolroaz A., Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials, International Journal of Solids and Structures, 85-86, 2016. Crossref

  28. Greco Fabrizio, Leonetti Lorenzo, Luciano Raimondo, Pascuzzo Arturo, Ronchei Camilla, A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach, Procedia Structural Integrity, 25, 2020. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain