Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2017020072
pages 99-119

CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS

Jiaxi Zhang
Department of Civil Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
Subhendu Chakraborty
Department of Civil Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218

RÉSUMÉ

Damage of materials inherently involves coupling of deformation and failure mechanisms at multiple length and time scales. This paper develops self-consistent elastic constitutive relations of crystalline materials containing atomistic scale cracks, from observations made in a concurrent multi-scale simulation system coupling atomistic and continuum domain models. The self-consistent constitutive model incorporates both nonlinearity and nonlocality to account for atomic level interactions and deformation mechanisms, especially near crack tips. Atomistic modeling in the concurrent model is done using molecular dynamics (MD), while the continuum modeling is done using a crystal elasticity finite element (FE) analysis code. The atomistic-continuum coupling is achieved by enforcing geometric compatibility and force equilibrium in an interface region. The constitutive model is calibrated by comparing with the results of MD predictions in the concurrent model. For validation, the crack tip stress field is investigated using both the coupled concurrent model and a FE model with the constitutive law. The self-consistent model exhibits excellent accuracy and enhanced efficiency in comparison with pure MD and concurrent model results.


Articles with similar content:

Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Somnath Ghosh, Prasanna Raghavan
A Constitutive Model for Nanomaterials Based on Spatial Secant
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Dong Qian, Rohit H. Gondhalekar
A MULTISCALE MODELING SCHEME BASED ON PERIDYNAMIC THEORY
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 3
Rezwanur Rahman, A. Haque, John T. Foster
STOCHASTIC PROCESSES OF {1012} DEFORMATION TWINNING IN HEXAGONAL CLOSE-PACKED POLYCRYSTALLINE ZIRCONIUM AND MAGNESIUM
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Irene J. Beyerlein, R. J. McCabe, C. N. Tome
Nonlocal Elastic-Damage Interface Mechanical Model
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Guido Borino, Francesco Parrinello, Boris Failla