Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2017020087
pages 121-142

MULTI-YIELD SURFACE MODELING OF VISCOPLASTIC MATERIALS

Hao Yan
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Caglar Oskay
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA

RÉSUMÉ

This manuscript presents a multi-yield surface model to idealize the mechanical behavior of viscoplastic solids subjected to cyclic loading. The multi-yield surface model incorporates the evolution of nonlinear viscoplastic flow through a piece-wise linear hardening approximation. A kinematic hardening law is employed to account for the evolution of backstress with respect to the viscoplastic strain rate. The new backstress evolution strategy is proposed to ensure that all yield surfaces remain consistent (i.e., satisfying collinearity) throughout the viscoplastic process. The multi-yield surface model is coupled with viscoelasticity to approximate the relaxation behavior of high-temperature metal alloys. The model is implemented using a mixed finite element approach. The capabilities of the proposed approach are demonstrated using experiments conducted on a high-temperature titanium alloy (Ti-6242S) subjected to static, cyclic, and relaxation conditions.


Articles with similar content:

Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
Farid H. Abed, George Voyiadjis
METASTABILITY AND DEFECTS-INDUCED CRITICALITY IN SHOCKED MATERIALS
Interfacial Phenomena and Heat Transfer, Vol.5, 2017, issue 2
Oleg Naimark, Natalia Saveleva, Yuriy Bayandin
Microstructure-Based Multiscale Constitutive Modeling of γ — γ′ Nickel-Base Superalloys
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
David L. McDowell, A.-J. Wang, M. M. Shenoy, R. S. Kumar
Investigation of Rules Governing Deformation of Solid Bodies and Diagnosis of the State of Loaded Materials on the Basis of an Acousto-Optic Tunable Structure
Telecommunications and Radio Engineering, Vol.68, 2009, issue 4
S. V. Shidlovskii, S. V. Panin, V. I. Syryamkin
Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Sangmin Lee, Veera Sundararaghavan