Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015011435
pages 281-295

MULTISCALE IDENTIFICATION OF THE RANDOM ELASTICITY FIELD AT MESOSCALE OF A HETEROGENEOUS MICROSTRUCTURE USING MULTISCALE EXPERIMENTAL OBSERVATIONS

M. T. Nguyen
Universite Paris-Est, Laboratoire Modelisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallee, Cedex 2, France
Christophe Desceliers
Universite Paris-Est, Laboratoire Modelisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallee, Cedex 2, France
Christian Soize
Université Paris-Est Marne-La-Vallée Cité Descartes 5, bd Descartes, Champs sur Marne, 77454 Marne La Vallee Cedex 2, France
J. M. Allain
Ecole Polytechnique, Laboratoire de Mecanique des Solides, 91128, Palaiseau cedex, France
H. Gharbi
Ecole Polytechnique, Laboratoire de Mecanique des Solides, 91128, Palaiseau cedex, France

RÉSUMÉ

This paper deals with a multiscale statistical inverse method for performing the experimental identification of the elastic properties of materials at macroscale and at mesoscale within the framework of a heterogeneous microstructure which is modeled by random elastic media. New methods are required for carrying out such multiscale identification using experimental measurements of the displacement fields carried out at macroscale and at mesoscale with only a single specimen submitted to a given external load at macroscale. In this paper, for a heterogeneous microstructure, a new identification method is presented and formulated within the framework of the three-dimensional linear elasticity. It permits the identification of the effective elasticity tensor at macroscale, and the identification of the tensor-valued random field, which models the apparent elasticity field at mesoscale. A validation is presented first with simulated experiments using a numerical model based on the hypothesis of 2D-plane stresses. Then, we present the results given by the proposed identification procedure for experimental measurements obtained by digital image correlation (DIC) on cortical bone.


Articles with similar content:

VALIDATION OF A PROBABILISTIC MODEL FOR MESOSCALE ELASTICITY TENSOR OF RANDOM POLYCRYSTALS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Arash Noshadravan, Roger Ghanem, Pedro Peralta, Johann Guilleminot, Ikshwaku Atodaria
CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang
A Multiscale Finite Element Approach for Buckling Analysis of Elastoplastic Long Fiber Composites
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 3
Julien Yvonnet, Hamid Zahrouni, Michel Potier-Ferry, Saeid Nezamabadi
NONLINEAR MULTISCALE HOMOGENIZATION OF CARBON NANOTUBE REINFORCED COMPOSITES WITH INTERFACIAL SLIPPAGE
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 4
Dimitris Savvas, Vissarion Papadopoulos
ON FEM EVALUATION OF STRESS CONCENTRATION IN MICROPOLAR ELASTIC MATERIALS
Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 4
F. Stachowicz, Victor A. Eremeyev, A. Skrzat