Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Effect of the Knudsen Number on Transient Times During Chemical Vapor Deposition

Volume 4, Numéro 3, 2006, pp. 319-335
DOI: 10.1615/IntJMultCompEng.v4.i3.30
Get accessGet access

RÉSUMÉ

Models for the individual steps used to fabricate integrated circuits (ICs) are of interest in order to improve fabrication efficiency and process designs. Here we focus on deposition from the gas stream in which the dominant species is an inert carrier gas, as it flows across a wafer on which ICs are being fabricated. We model the transport of gaseous species to the surface and heterogeneous (surface) chemical reactions for chemical vapor deposition using a kinetic transport and reaction model (KTRM), which is represented by a system of linear Boltzmann equations. The model is valid for a range of pressures and for length scales from nanometers to decimeters, making it suitable for multiscale models. We present transient simulation results for transport of reactants into an inherently three-dimensional prototypical micron scale trench via structure for a wide range of Knudsen numbers. The results highlight the capabilities of the KTRM and its implementation, and demonstrate that the transients last longer for lower Knudsen numbers than for higher Knudsen numbers. We briefly discuss how the KTRM might be used in a multiscale computational model.

CITÉ PAR
  1. Gobbert Matthias K., Cale Timothy S., Modeling multiscale effects on transients during chemical vapor deposition, Surface and Coatings Technology, 201, 22-23, 2007. Crossref

  2. Arani A Ghorbanpour, Haghparast E, Maraghi Z Khoddami, Amir S, Nonlocal vibration and instability analysis of embedded DWCNT conveying fluid under magnetic field with slip conditions consideration, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229, 2, 2015. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain