Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Atomistic Simulations - Based Understanding of the Mechanism behind the Role of Second-Phase SiC Particles in Fracture Resistance of SiC-Si3N4 Nanocomposites

Volume 7, Numéro 4, 2009, pp. 277-294
DOI: 10.1615/IntJMultCompEng.v7.i4.40
Get accessGet access

RÉSUMÉ

One of the primary factors affecting the failure in high strength Silicon Carbide (SiC)-Silicon Nitride (Si3N4) nanocomposites is the placement of spherical nano-sized SiC particles in micro-sized Si3N4 grains. It has been found that as a result of a significant number of nanosized SiC particles being present in micro-sized Si3N4 grains, the SiC particles invariantly fall in wake regions of microcracks leading to significant structural strength. In this research, this mechanism is examined using 3-D molecular dynamics (MD) simulations of crack propagation in SiC-Si3N4 nanocomposites with cylindrical SiC inclusions. Analyses reveal that the second phase particles act as significant stress raisers bringing down the internal strength of the single crystal and bi-crystalline Si3N4 blocks by a factor of almost 2 times. With smaller SiC particle, the interfacial boundary in the bi-crystalline Si3N4 block acts as a stress reliever. However, with increase in the size of SiC particle and with decrease in the spacing between adjacent SiC particles the interfacial boundary's presence results in significant internal stress rise. The results point out that the placement of SiC particles along the interfacial boundaries will not always lead to strengthening of the nanocomposite. Overall, MD analyses confirm the earlier continuum simulation and experimental results concerning the effect of second phase SiC particles on the SiC-Si3N4 nanocomposite strength. In addition, MD analyses also point out that the strengthening of the nanocomposite by placing second phase particles along grain boundaries is only possible for a selective few second phase particle sizes.

RÉFÉRENCES
  1. Weimer, A. W. and Bordia, R. K., Processing and properties of nanophase SiC/Si<sub>3</sub>N<sub>4</sub> composites. DOI: 10.1016/S1359-8368(99)00039-6

  2. Ajayan, P. M., Schadler, L. S., and Braun, P. V., Nanocomposite Science and Technology.

  3. Niihara, K., New design concept for structural ceramics-ceramic nanocomposites.

  4. Ohji, T., Jeong, Y.-K., Choa, Y.-H., and Niihara, K., Strengthening and toughening mechanisms of ceramic nanocomposites. DOI: 10.1111/j.1151-2916.1998.tb02503.x

  5. Rendtel, A., Hubner, H., Herrman, M., and Schubert, C., Silicon nitride/silicon carbide nanocomposite materials: II, hot strength, creep, and oxidation resistance. DOI: 10.1111/j.1151-2916.1998.tb02457.x

  6. Besson, J. L., Mayne, M., Bahloul-Hourlier, D., and Goursat, P., Nanocomposites Si<sub>3</sub>N<sub>4</sub>-SiCN: Influence of SiC nanocomposites on the creep behavior.

  7. Buljan, S. T., Baldoni, J. C., and Huckabee, M. L., Si<sub>3</sub>N<sub>4</sub>-SiC composites.

  8. Chedda, M. S., Flinn, B. D., Leckie, R., and Bordia, R. K., Effect of sub-micron sized reinforcements on the high temperature behavior of Si<sub>3</sub>N<sub>4</sub> composites.

  9. Lange, F. F., Effect of microstructure on strength of Si<sub>3</sub>N<sub>4</sub>-SiC composite system. DOI: 10.1111/j.1151-2916.1973.tb12520.x

  10. Sternitzke, M., Review: Structural ceramic nanocomposites. DOI: 10.1016/S0955-2219(96)00222-1

  11. Wan, J., Duan, R.-G., Gasch, M. J., and Mukherjee, A. K., Highly creep-resistant silicon nitride/silicon carbide nano-nano composites. DOI: 10.1111/j.1551-2916.2005.00702.x

  12. Bill, J. and Aldinger, F., Precursort-derived covalent ceramics. DOI: 10.1002/adma.19950070903

  13. Kroke, E., Li, Y.-L., Konetschny, C., Lecomte, E., Fasel, C., and Riedel, R., Silazane derived ceramics and related materials. DOI: 10.1016/S0927-796X(00)00008-5

  14. Niihara, K., Izaki, K., and Kawakami, T., Hotpressed Si<sub>3</sub>N<sub>4</sub>-32%SiC nanocomposites from amorphous Si-C-N powder with improved strength above 1200&pm;C. DOI: 10.1007/BF00721925

  15. Riedel, R., Seher, M., and Becker, G., Sintering of amorphous polymer-derived Si, N and C containing composite powders. DOI: 10.1016/0955-2219(89)90018-6

  16. Riedel, R., Streker, K., and Petzow, G., In-situ polysilane-derived silicon carbide particulates dispersed in silicon nitride composite. DOI: 10.1111/j.1151-2916.1989.tb06033.x

  17. Wan, J., Duan, R.-G., Gasch, M. J., and Mukherjee, A. K., Highly creep-resistant silicon nitride/silicon carbide nano-nano composites. DOI: 10.1111/j.1551-2916.2005.00702.x

  18. Wan, J., Gasch, M. J., and Mukherjee, A. K., Silicon carbonitride ceramics produced by pyrolysis of polymer ceramic precursors. DOI: 10.1557/JMR.2000.0238

  19. Choi, H.-J., Cho, K.-S., and Lee, J.-G., Rcurve behavior of silicon-nitride-titanium nitride composites. DOI: 10.1111/j.1151-2916.1997.tb03172.x

  20. Tomar, V., Analyses of the role of grain boundaries in mesoscale dynamic fracture resistance of SiC-Si<sub>3</sub>N<sub>4</sub> intergranular nanocomposites. DOI: 10.1016/j.engfracmech.2008.04.020

  21. Tomar, V., Analyses of the role of the second phase SiC particles in microstructure dependent fracture resistance variation of SiC-Si<sub>3</sub>N<sub>4</sub> nanocomposites. DOI: 10.1088/0965-0393/16/3/035001

  22. Farkas, D.,Willemann, M., and Hyde, B., Atomistic mechanisms of fatigue in nanocrystalline metals. DOI: 10.1103/PhysRevLett.94.165502

  23. Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H., Deformation twinning in nanocrystalline Al by molecular dynamics simulation. DOI: 10.1016/S1359-6454(02)00318-X

  24. Liao, X. Z., Zhou, F., Lavernia, E. J., He, D. W., and Zhua, Y. T., Deformation twins in nanocrystalline Al. DOI: 10.1063/1.1633975

  25. Liao, X. Z., Zhou, F., Lavernia, E. J., Srinivasan, S. G., Baskes, M. I., He, D. W., and Zhu, Y. T., Deformation mechanism in nanocrystalline Al: Partial dislocation slip. DOI: 10.1063/1.1594836

  26. Abraham, F. F., How fast can cracks move? A research adventure in materials failure using millions of atoms and big computers. DOI: 10.1080/00018730310001594198

  27. Kadau, K., Germann, T. C., Lomdahl, P. S., and Holian, B. L., Microscopic view of structural phase transitions induced by shock waves. DOI: 10.1126/science.1070375

  28. Dionald, W. A. R. D., Curtin, W. A., and Yue, Q., Mechanical behavior of aluminumsilicon nanocomposites: A molecular dynamics study. DOI: 10.1016/j.actamat.2006.05.022

  29. Song, M. and Chen, L., Molecular dynamics simulation of the fracture in polymer-exfoliated layered silicate nanocomposites. DOI: 10.1002/mats.200500041

  30. Tomar, V. and Zhou, M., Analyses of tensile deformation of nanocrystalline &alpha;-Fe<sub>2</sub>O<sub>3</sub>+fcc-Al composites using classical molecular dynamics. DOI: 10.1016/j.jmps.2006.10.005

  31. Zeng, Q. H., Yu, A. B., and Lu, G. Q., Molecular dynamics simulations of organoclays and polymer nanocomposites. DOI: 10.1504/IJNT.2008.016918

  32. Zeng, Q. H., Yu, A. B., Lu, G. Q., and Standish, R. K., Molecular dynamics simulation of organic-inorganic nanocomposites: Layering behavior and interlayer structure of organoclays. DOI: 10.1021/cm0342952

  33. Tsuruta, K., Totsuji, H., and Totsuji, C., Neck formation processes of nanocrystalline silicon carbide: A tight-binding molecular dynamics study. DOI: 10.1080/09500830110037841

  34. Tsuruta, K., Totsuji, H., and Totsuji, C., Parallel tight-binding molecular dynamics for high-temperature neck formation processes of nanocrystalline silicon carbide. DOI: 10.1080/09500830110037841

  35. Lidorikis, E., Bachlechner, M. E., Kalia, R. K., Nakano, A., Vashishta, P., and Voyiadjis, G. Z., Coupling length scales for multiscale atomisticcontinuum simulations: Atomistically induced stress distributions in Si/Si<sub>3</sub>N<sub>4</sub> nanopixels. DOI: 10.1103/PhysRevLett.87.086104

  36. Mirgorodsky, A. P., Baraton, M. I., and Quintard, P., Lattice dynamics and prediction of pressure-induced incommensurate instability of a &beta;- ti<sub>3</sub>N<sub>4</sub> lattice with a simple mechanical mode. DOI: 10.1103/PhysRevB.48.13326

  37. Tomar, V. and Zhou, M., Tension-compression strength asymmetry of nanocrystalline &alpha;- Fe<sub>2</sub>O<sub>3</sub>+fcc-Al ceramic-metal composites. DOI: 10.1063/1.2210797

  38. Tomar, V., Zhai, J., and Zhou, M., Bounds for element size in a variable stiffness cohesive finite element model. DOI: 10.1002/nme.1138

  39. Klopp, R. W. and Shockey, D. A., The strength behavior of granulated silicon carbide at high strain rates and confining pressure. DOI: 10.1063/1.349750

  40. Holmquist, T. J. and Johnson, G. R., Response of silicon carbide to high velocity impact. DOI: 10.1063/1.1468903

  41. Walker, J., Analytically modeling hypervelocity penetration of thick ceramic targets. DOI: 10.1016/j.ijimpeng.2003.10.021

  42. Loubens, A., Rivero, C., Boivin, P., Charlet, B., Fortunier, R., and Thomas, O., Investigation of local stress fields: Finite element modeling and high-resolution X-ray diffraction. DOI: 10.1557/PROC-875-O8.3

  43. Minnaar, K., Experimental and numerical analysis of damage in laminate composites under low velocity impact loading.

  44. Tomar, V. and Zhou, M., Deterministic and stochastic analyses of dynamic fracture in twophase ceramic microstructures with random material properties. DOI: 10.1016/j.engfracmech.2004.06.006

  45. Zhai, J., Tomar, V., and Zhou, M., Micromechanical modeling of dynamic fracture using the cohesive finite element method. DOI: 10.1115/1.1647127

  46. Xu, X. P. and Needleman, A., Numerical simulations of fast crack growth in brittle solids. DOI: 10.1016/0022-5096(94)90003-5

  47. Sorensen, B. F. and Jacobsen, T. K., Determination of cohesive laws by the J integral approach. DOI: 10.1016/S0013-7944(03)00127-9

  48. Cornec, A., Scheider, I., and Schwalbe, K.-H., On the practical application of the cohesive zone model. DOI: 10.1016/S0013-7944(03)00134-6

  49. Espinosa, H. D., Dwivedi, S., and Lu, H.- C., Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws. DOI: 10.1016/S0045-7825(99)00222-4

  50. Niihara, K., Suganuma, K., Nakahira, A., and Izaki, K., Interfaces in Si<sub>3</sub>N<sub>4</sub>-SiC nanocomposites.

  51. Schwetz, K. A., Kempf, T., Saldsleder, D., and Telle, R., Toughness and hardness of LPS-SiC and LPS-SiC based composites. DOI: 10.1002/9780470291184.ch85

  52. Messier, D. R. and Croft, W. J., Silicon nitride.

  53. Liu, X.-J., Huang, Z.-Y., Pu, X.-P., Subn, X.-W., and Huang, L.-P, Influence of planetary highenergy ball milling on microstructure and mechanical properties of silicon nitride ceramics. DOI: 10.1111/j.1551-2916.2005.00227.x

  54. Blugan, G., Hadad, Y. M., Janczak-Rusch, J., Kuebler, J., and Graulez, T., Fractography, mechanical properties, and microstructure of commercial silicon nitride–titanium nitride composites. DOI: 10.1111/j.1551-2916.2005.00186.x

  55. Latapie, A. and Farkas, D., Molecular dynamics investigation of the fracture behavior of nanocrystalline &alpha;-Fe. DOI: 10.1103/PhysRevB.69.134110

  56. Wendel, J. A. and Goddard, W. A., The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for &alpha;- and &beta;-ti<sub>3</sub>N<sub>4</sub>. DOI: 10.1063/1.463859

  57. Mota, F. D. B., Justo, J. F., and Fazzio, A., Hydrogen role on the properties of amorphous silicon nitride. DOI: 10.1063/1.370977

  58. Ching, W.-Y., Xu, Y.-N., Gale, J. D., and Ruehle, M., Ab-initio total energy calculation of &alpha; and &beta;-silicon nitride and the derivation of effective pair potentials with application to lattice dynamics. DOI: 10.1111/j.1151-2916.1998.tb02755.x

  59. Fang, C. M., Wijs, G. A. D., Hintzen, H. T., and With, G. D., Phonon spectrum and thermal properties of cubic Si<sub>3</sub>N<sub>4</sub> from first-principles calculations. DOI: 10.1063/1.1566473

  60. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technologies. DOI: 10.1063/1.358463

  61. Tersoff, J., Empirical interatomic potential for silicon with improved elastic properties. DOI: 10.1103/PhysRevB.38.9902

  62. Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. DOI: 10.1103/PhysRevB.39.5566

  63. Tersoff, J., Carbon defects and defect reactions in silicon. DOI: 10.1103/PhysRevLett.64.1757

  64. Huang, H., Ghoniem, N. M., Wong, J. K., and Baskes, M. I., Molecular dynamics determination of defect energetics in &beta;-SiC using three representative empirical potentials. DOI: 10.1088/0965-0393/3/5/003

  65. Noreyan, A., Amar, J. G., and Marinescu, I., Molecular dynamics simulations of nanoindentation of &beta;-SiC with diamond indentor. DOI: 10.1016/j.mseb.2004.11.016

  66. Ma, Y. and Garofalini, S. H., Application of the Wolf damped Coulomb method to simulations of SiC. DOI: 10.1063/1.1858860

  67. Marian, C. M., Gastreich, M., and Gale, J. D., Empirical two-body potential for solid silicon nitride, boron nitride, and borosilazane modifications. DOI: 10.1103/PhysRevB.62.3117

  68. Vincent, J. and Merz, K. M., A highly portable parallel implementation of AMBER using the Message Massing Interface standard.

  69. Jian, W., Kaiming, Z., and Xide, X., Pair potentials for C-C, Si-Si and Si-C from inversion of the cohesive energy. DOI: 10.1088/0953-8984/6/5/009

  70. Tomar, V., Atomistic modeling of the Al+Fe<sub>2</sub>O<sub>3</sub> material system using classical molecular dynamics.

  71. Smith, W., Yong, C. W., and Rodger, P. M., DL_POLY: Application to molecular simulation. DOI: 10.1080/08927020290018769

  72. Ding, H.-Q., Karasawa, N., and Goddard, W. A., III. Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. DOI: 10.1063/1.463935

  73. Wolf, D., Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. DOI: 10.1103/PhysRevLett.68.3315

  74. Darden, T. A., York, D. M., and Pedersen, L. G., Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. DOI: 10.1063/1.464397

  75. Tomar, V. and Zhou, M., Classical moleculardynamics potential for the mechanical strength of nanocrystalline composite fcc-Al+&alpha;-Fe<sub>2</sub>O<sub>3</sub>. DOI: 10.1103/PhysRevB.73.174116

  76. Schiøtz, J., Di Tolla, F. D., and Jacobsen, K. W., Softening of nanocrystalline metals at very small grain sizes. DOI: 10.1038/35328

  77. Van Swygenhoven, H. and Caro, A., Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. DOI: 10.1063/1.119785

  78. Spearot, D. E., Jacob, K. I., and McDowell, D. L., Nucleation of dislocations from [001] bicrystal interfaces in aluminum. DOI: 10.1016/j.actamat.2005.04.012

  79. Schiøtz, J., Vegge, T., Di Tolla, F. D., and Jacobsen, K. W., Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. DOI: 10.1103/PhysRevB.60.11971

  80. Melchionna, S., Ciccotti, G., and Holian, B. L., Hoover NPT dynamics for systems varying in shape and size. DOI: 10.1080/00268979300100371

  81. Zhou, M., A new look at the atomic level virial stress—On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

  82. Perez-Regueiro, J., Pastor, J. Y., Llorca, J., Elices, M., Miranzo, P., and Moya, J. S., Revisiting the mechanical behavior of aluminum/silicon carbide nanocomposites. DOI: 10.1016/S1359-6454(98)00193-1

CITÉ PAR
  1. Tomar Vikas, Samvedi Vikas, Correlation of Thermal Conduction Properties With Mechanical Deformation Characteristics of a Set of SiC–Si3N4 Nanocomposites, Journal of Engineering Materials and Technology, 133, 1, 2011. Crossref

  2. Liao Ningbo, Ma Guang, Zhang Miao, Xue Wei, Effects of SiC particles on mechanical properties of SiCN-based composite by atomistic simulation, Composites Part B: Engineering, 43, 4, 2012. Crossref

  3. Han You Sung, Tomar Vikas, An investigation into the influence of grain boundary misorientation on the tensile strength of SiC bicrystals, Mechanics of Advanced Materials and Structures, 23, 5, 2016. Crossref

  4. Han You Sung, Tomar Vikas, An ab-initio analysis of the influence of knock-on atom induced damage on the peak tensile strength of 3C-SiC grain boundaries, International Journal of Damage Mechanics, 24, 3, 2015. Crossref

  5. Kumar Sandeep, Sarita , Nehra Monika, Dilbaghi Neeraj, Tankeshwar K., Kim Ki-Hyun, Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications, Progress in Polymer Science, 80, 2018. Crossref

  6. Luo Junting, Xi Chenyang, Gu Yongfei, Zhang Lili, Zhang Chunxiang, Xue Yahong, Zhang Zhen, Toughening mechanism of SIALON/Si2N2O multiphase ceramics and finite element simulation of stress field at crack tip, Computational Materials Science, 159, 2019. Crossref

  7. Tomar Vikas, Gan Ming, Kim Han Sung, Atomistic analyses of the effect of temperature and morphology on mechanical strength of Si–C–N and Si–C–O nanocomposites, Journal of the European Ceramic Society, 30, 11, 2010. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain