Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2014007646
pages 465-484

GENERALIZED MULTISCALE FINITE ELEMENT METHODS: OVERSAMPLING STRATEGIES

Yalchin Efendiev
Department of Mathematics and Institute for Scientific Computation (ISC), Texas A&M University, College Station, TX 77840, USA; Multiscale Model Reduction Laboratory, North-Eastern Federal University, Yakutsk, Russia, 677980
Juan Galvis
Universidad Nacional de Colombia
Guanglian Li
Department of Mathematics & Institute for Scientific Computation (ISC), Texas A&M University, College Station, Texas, USA; Institute for Numerical Simulation, The University of Bonn, Wegelerstrasse 6,53115 Bonn, Germany
Michael Presho
Department of Mathematics & Institute for Scientific Computation (ISC), Texas A&M University, College Station, Texas, USA

RÉSUMÉ

In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local spectral problems. We present numerical results and compare various oversampling techniques in order to complement the proposed technique and analysis.


Articles with similar content:

SPARSE GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Wing Tat Leung, Eric T. Chung, Yalchin Efendiev, Guanglian Li
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung
Inductive Reconstruction Method for "Monoflow" Probabilistic Graph Models of Dependencies
Journal of Automation and Information Sciences, Vol.35, 2003, issue 10
Alexander S. Balabanov
NONLINEAR NONLOCAL MULTICONTINUA UPSCALING FRAMEWORK AND ITS APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
Eric T. Chung, Yalchin Efendiev, Wing T. Leung, Mary Wheeler
REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 6
Wing Tat Leung, Maria Vasilyeva, Eric T. Chung, Yalchin Efendiev