Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials

Volume 4, Numéro 1, 2006, pp. 29-46
DOI: 10.1615/IntJMultCompEng.v4.i1.40
Get accessGet access

RÉSUMÉ

Multiscale mathematical and computational formulation for coupling mesoscale dislocation mechanics and macroscale continuum mechanics for prediction of plastic deformation in polycrystalline materials is presented. In this development a total Lagrangian multiscale variational formulation for materials subjected to geometric and material nonlinearities is first introduced. By performing scale decomposition of kinematic variables and the corresponding dislocation kinematic variables, several leading-order equations, including a scale-coupling equation, a mesoscale dislocation evolution equation, and a homogenized macroscale equilibrium equation, are obtained. By further employing the Orowan relation, a mesoscopic plastic strain is obtained from dislocation velocity and its distribution, and a homogenized elastoplastic stress-strain relation for macroscale is constructed. The macroscale, mesoscale, and scale-coupling equations are solved interactively at each macroscopic load increment, and information on the two scales is passed through the macroscale integration points. In this multiscale approach the phenomenological hardening rule and flow rule in the classical plasticity theory are avoided, and they are replaced by a homogenized mesoscale material response characterized by dislocation evolution and their interactions.

CITÉ PAR
  1. To Albert C., Liu Wing Kam, Olson Gregory B., Belytschko Ted, Chen Wei, Shephard Mark S., Chung Yip-Wah, Ghanem Roger, Voorhees Peter W., Seidman David N., Wolverton Chris, Chen J. S., Moran Brian, Freeman Arthur J., Tian Rong, Luo Xiaojuan, Lautenschlager Eric, Challoner A. Dorian, Materials integrity in microsystems: a framework for a petascale predictive-science-based multiscale modeling and simulation system, Computational Mechanics, 42, 4, 2008. Crossref

  2. Wang Dongdong, Fang Lingming, A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures, Interaction and multiscale mechanics, 3, 3, 2010. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain