Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013004653
pages 333-345

SIMULATION OF TRANSIENT CONJUGATE HEAT TRANSFER VIA A TEMPORAL MULTISCALE APPROACH

Benedicte Baque
Onera − The French Aerospace Lab, F-92322 Chatillon, France
Marc Errera
Onera − The French Aerospace Lab, F-92322 Chatillon, France
Arjen Roos
Onera − The French Aerospace Lab, F-92322 Chatillon, France
Frederic Feyel
Onera − The French Aerospace Lab, F-92322 Chatillon, France

RÉSUMÉ

This paper describes a numerical investigation of the transient temperature field in a solid with a conjugate heat transfer method. The basic approach is based on the strong partitioned coupling of a finite-volume Navier-Stokes solver and a finite-element heat conduction solver. The numerical model employs a quasidynamic algorithm in which the transient thermal field in the solid is coupled with a sequence of steady states in the fluid. Experimental results from a simple test case are compared to numerical simulations and they are found to correspond to within the experimental uncertainties. This model represents a contribution to the field of real-time transient heat loads in solids.

RÉFÉRENCES

  1. Boyer, H., Garde, F., Gatina, J.-C., and Brau, J., A multimodel approach to building thermal simulation for design and research purposes. DOI: 10.1016/S0378-7788(97)00064-9

  2. Brezinski, C. and Redivo, Z. M., Generalizations of Aitken's process for accelerating the convergence of sequences. DOI: 10.1590/S0101-82052007000200001

  3. Causin, P., Gerbeau, J. F., and Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems. DOI: 10.1016/j.cma.2004.12.005

  4. CEDRE, Calcul d'Ecoulements (Diphasiques) (Réactifs) pour l'Energétique.

  5. Chan, T. F., An approximate Newton method for coupled nonlinear systems. DOI: 10.1016/j.jcp.2009.08.003

  6. Chemin, S., Etude des Interactions Thermiques Fluide-Structure par un Couplage de Codes de Calcul.

  7. Dorfman, A., Transient heat transfer between a semi-infinite hot plate and a flowing cooling liquid film. DOI: 10.1115/1.1650389

  8. Errera, M.-P., Chaineray, G., and Chemin, S., Etude du transitoire Thermique dans un matériau via un couplage convection-conduction.

  9. Errera, M.-P., Garaud, J.-D., and Turpin, G., Transient coupling numerical methods applied to aerospace configurations.

  10. Errera, M.-P. and Baqué, B., A quasi-dynamic procedure for coupled thermal simulations. DOI: 10.1002/fld.3782

  11. Garaud, J.-D., Développement de Méthodes de Couplage Aéro-Thermo-Mécanique Pour la Prédiction D'instabilités Dans les Structures Aérospatiales Chaudes.

  12. Garaud, J.-D., Roos, A., Feyel, F., Roux, F.-X., Errera, M.-P., and Maday, Y., Coupled simulation of a nozzle cooling system.

  13. Giles, M. B., Stability analysis of numerical interface conditions in fluid-structure thermal analysis. DOI: 10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J

  14. Godunov, S. K. and Ryabenkii, V. S., The Theory of Difference Schemes&mdash;An Introduction.

  15. Hahn, Z., Dennis, B., and Dulikravich, G., Simultaneous prediction of external flow-field and temperature in internally cooled 3-D turbine blade material. DOI: 10.1515/TJJ.2001.18.1.47

  16. Heselhaus, A. and Vogel, D. T., Numerical simulation of turbine blade cooling with respect to blade heat conduction and inlet temperature profiles.

  17. Kao, K. H. and Liou, M. S., Application of Chimera/unstructured hybrid grids for conjugate heat transfer. DOI: 10.2514/2.270

  18. Le Tallec, P. and Mouro, J., Fluid structure interaction with large structural displacements. DOI: 10.1016/S0045-7825(00)00381-9

  19. Miekkala, U. and Nevanlinna, O., An approximate Newton method for coupled nonlinear systems. DOI: 10.1016/j.jcp.2009.08.003

  20. Montenay, A., Pat, L., and Dubou, J.-M., Conjugate heat transfer analysis of an engine internal cavity.

  21. MpCCI, Mesh-based Parallel Code Coupling Interface.

  22. Naveira-Cotta, C. P., Lachi, M., Rebay, M., and Cotta, R. M., Comparison of experiments and hybrid simulations of transient conjugated conduction-convection-radiation.

  23. Olek, S., Elias, E., Wacholder, E., and Kaizerman, S., Unsteady conjugated heat transfer in laminar pipe flow. DOI: 10.1016/0017-9310(91)90287-O

  24. Perelman, T. L., On conjugated problems of heat transfer. DOI: 10.1016/0017-9310(61)90044-8

  25. Piperno, S., Farhat, C., and Larrouturou, B., Partitioned procedures for the transient solution of coupled aeroelastic problems, Part I: Model Problem, Theory, and two-dimensional application. DOI: 10.1016/0045-7825(95)92707-9

  26. Roux, F.-X. and Garaud, J.-D., Domain decomposition methodology with Robin interface matching conditions for solving strongly coupled fluid-structure problems. DOI: 10.1615/IntJMultCompEng.v7.i1.50

  27. Schutte, D. J., Rahman, M. M., and Faghri, A., Transient conjugate heat transfer in a thick-walled pipe with developing laminar flow. DOI: 10.1080/10407789108944871

  28. Somarathne, S., Seymour, M., and Kolokotroni, M., Dynamic thermal CFD simulation of a typical office by efficient transient solution methods. DOI: 10.1016/j.buildenv.2004.09.016

  29. Vierendeels, J., Dumont, K., Dick, E., and Verdonck, P., Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion. DOI: 10.2514/1.3660

  30. Vierendeels, J., Lanoye, L., Degroote, J., and Verdonck, P., Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. DOI: 10.1016/j.compstruc.2006.11.006

  31. Vogel, D. T., Computation of 3D viscous and heat transfer for the application to film cooled gas turbine blades.

  32. Zhai, Z. and Chen, Q., Impact of determination of convective heat transfer coefficient on the coupled energy and CFD simulation for buildings.

  33. Zhai, Z. and Chen, Q., Solution characters of iterative coupling between energy simulation and CFD programs. DOI: 10.1016/S0378-7788(02)00156-1

  34. Z-SeT, Finite element solver and material constitutive model library.


Articles with similar content:

A NUMERICAL AND EXPERIMENTAL STUDY OF TRANSIENT CONJUGATE HEAT TRANSFER IN A FLAT PLATE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Marc-Paul Errera, Benedicte Baque, Mourad Rebay
ANALYSIS OF THE TRANSIENT THERMAL RESPONSE OF A SOLID VIA A CONJUGATE HEAT TRANSFER METHOD
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Gilles Chaineray, Marc-Paul Errera
NUMERICAL MODELING OF THERMAL MODES OF POWERFUL ELECTRONIC DEVICES UNDER NATURAL CONVECTION CONDITIONS
International Heat Transfer Conference 9, Vol.2, 1990, issue
V.V. Marin, E.V. Dilevskaya
Double diffusive convection in adjacent vertical fluid and porous layers
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Dominique Gobin, Adrian Neculae, Benoit Goyeau
DYNAMIC MODEL FOR PHOSPHATE ROTARY DRYER
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Mohamed Agouzoul, Tarik Raffak, Mustapha Mabsate, Abdellah Chik, Abdelkader Alouani