Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

SIMULATION OF TRANSIENT CONJUGATE HEAT TRANSFER VIA A TEMPORAL MULTISCALE APPROACH

Volume 11, Numéro 4, 2013, pp. 333-345
DOI: 10.1615/IntJMultCompEng.2013004653
Get accessGet access

RÉSUMÉ

This paper describes a numerical investigation of the transient temperature field in a solid with a conjugate heat transfer method. The basic approach is based on the strong partitioned coupling of a finite-volume Navier-Stokes solver and a finite-element heat conduction solver. The numerical model employs a quasidynamic algorithm in which the transient thermal field in the solid is coupled with a sequence of steady states in the fluid. Experimental results from a simple test case are compared to numerical simulations and they are found to correspond to within the experimental uncertainties. This model represents a contribution to the field of real-time transient heat loads in solids.

RÉFÉRENCES
  1. Boyer, H., Garde, F., Gatina, J.-C., and Brau, J., A multimodel approach to building thermal simulation for design and research purposes. DOI: 10.1016/S0378-7788(97)00064-9

  2. Brezinski, C. and Redivo, Z. M., Generalizations of Aitken's process for accelerating the convergence of sequences. DOI: 10.1590/S0101-82052007000200001

  3. Causin, P., Gerbeau, J. F., and Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems. DOI: 10.1016/j.cma.2004.12.005

  4. CEDRE, Calcul d'Ecoulements (Diphasiques) (Réactifs) pour l'Energétique.

  5. Chan, T. F., An approximate Newton method for coupled nonlinear systems. DOI: 10.1016/j.jcp.2009.08.003

  6. Chemin, S., Etude des Interactions Thermiques Fluide-Structure par un Couplage de Codes de Calcul.

  7. Dorfman, A., Transient heat transfer between a semi-infinite hot plate and a flowing cooling liquid film. DOI: 10.1115/1.1650389

  8. Errera, M.-P., Chaineray, G., and Chemin, S., Etude du transitoire Thermique dans un matériau via un couplage convection-conduction.

  9. Errera, M.-P., Garaud, J.-D., and Turpin, G., Transient coupling numerical methods applied to aerospace configurations.

  10. Errera, M.-P. and Baqué, B., A quasi-dynamic procedure for coupled thermal simulations. DOI: 10.1002/fld.3782

  11. Garaud, J.-D., Développement de Méthodes de Couplage Aéro-Thermo-Mécanique Pour la Prédiction D'instabilités Dans les Structures Aérospatiales Chaudes.

  12. Garaud, J.-D., Roos, A., Feyel, F., Roux, F.-X., Errera, M.-P., and Maday, Y., Coupled simulation of a nozzle cooling system.

  13. Giles, M. B., Stability analysis of numerical interface conditions in fluid-structure thermal analysis. DOI: 10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J

  14. Godunov, S. K. and Ryabenkii, V. S., The Theory of Difference Schemes&mdash;An Introduction.

  15. Hahn, Z., Dennis, B., and Dulikravich, G., Simultaneous prediction of external flow-field and temperature in internally cooled 3-D turbine blade material. DOI: 10.1515/TJJ.2001.18.1.47

  16. Heselhaus, A. and Vogel, D. T., Numerical simulation of turbine blade cooling with respect to blade heat conduction and inlet temperature profiles.

  17. Kao, K. H. and Liou, M. S., Application of Chimera/unstructured hybrid grids for conjugate heat transfer. DOI: 10.2514/2.270

  18. Le Tallec, P. and Mouro, J., Fluid structure interaction with large structural displacements. DOI: 10.1016/S0045-7825(00)00381-9

  19. Miekkala, U. and Nevanlinna, O., An approximate Newton method for coupled nonlinear systems. DOI: 10.1016/j.jcp.2009.08.003

  20. Montenay, A., Pat, L., and Dubou, J.-M., Conjugate heat transfer analysis of an engine internal cavity.

  21. MpCCI, Mesh-based Parallel Code Coupling Interface.

  22. Naveira-Cotta, C. P., Lachi, M., Rebay, M., and Cotta, R. M., Comparison of experiments and hybrid simulations of transient conjugated conduction-convection-radiation.

  23. Olek, S., Elias, E., Wacholder, E., and Kaizerman, S., Unsteady conjugated heat transfer in laminar pipe flow. DOI: 10.1016/0017-9310(91)90287-O

  24. Perelman, T. L., On conjugated problems of heat transfer. DOI: 10.1016/0017-9310(61)90044-8

  25. Piperno, S., Farhat, C., and Larrouturou, B., Partitioned procedures for the transient solution of coupled aeroelastic problems, Part I: Model Problem, Theory, and two-dimensional application. DOI: 10.1016/0045-7825(95)92707-9

  26. Roux, F.-X. and Garaud, J.-D., Domain decomposition methodology with Robin interface matching conditions for solving strongly coupled fluid-structure problems. DOI: 10.1615/IntJMultCompEng.v7.i1.50

  27. Schutte, D. J., Rahman, M. M., and Faghri, A., Transient conjugate heat transfer in a thick-walled pipe with developing laminar flow. DOI: 10.1080/10407789108944871

  28. Somarathne, S., Seymour, M., and Kolokotroni, M., Dynamic thermal CFD simulation of a typical office by efficient transient solution methods. DOI: 10.1016/j.buildenv.2004.09.016

  29. Vierendeels, J., Dumont, K., Dick, E., and Verdonck, P., Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion. DOI: 10.2514/1.3660

  30. Vierendeels, J., Lanoye, L., Degroote, J., and Verdonck, P., Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. DOI: 10.1016/j.compstruc.2006.11.006

  31. Vogel, D. T., Computation of 3D viscous and heat transfer for the application to film cooled gas turbine blades.

  32. Zhai, Z. and Chen, Q., Impact of determination of convective heat transfer coefficient on the coupled energy and CFD simulation for buildings.

  33. Zhai, Z. and Chen, Q., Solution characters of iterative coupling between energy simulation and CFD programs. DOI: 10.1016/S0378-7788(02)00156-1

  34. Z-SeT, Finite element solver and material constitutive model library.

CITÉ PAR
  1. Verstraete Tom, Scholl Sebastian, Stability analysis of partitioned methods for predicting conjugate heat transfer, International Journal of Heat and Mass Transfer, 101, 2016. Crossref

  2. Errera M.-P., Lazareff M., Garaud J.-D., Soubrié T., Douta C., Federici T., A coupling approach to modeling heat transfer during a full transient flight cycle, International Journal of Heat and Mass Transfer, 110, 2017. Crossref

  3. Corral Roque, Wang Zhi, An efficient steady state coupled fluid-solid heat transfer method for turbomachinery applications, International Journal of Thermal Sciences, 130, 2018. Crossref

  4. Gelain Matteo, Errera Marc-Paul, Gicquel Olivier, Assessment and numerical validation of a normal mode stability analysis for conjugate heat transfer, International Journal of Heat and Mass Transfer, 191, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain