Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Multiphase Science and Technology
SJR: 0.183 SNIP: 0.483 CiteScore™: 0.5

ISSN Imprimer: 0276-1459
ISSN En ligne: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v21.i4.40
pages 329-350

EXPERIMENTAL STUDY OF BUBBLE BEHAVIOR AND LOCAL HEAT FLUX IN POOL BOILING UNDER VARIABLE GRAVITATIONAL CONDITIONS

N. Schweizer
Chair of Technical Thermodynamics, Technische Universitat Darmstadt
Peter Stephan
Institute for Technical Thermodynamics, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany

RÉSUMÉ

This paper presents the results of a nucleate boiling experiment performed in the framework of the 42nd European Space Agency parabolic flight campaign. Nucleate boiling of FC-72 was established at a single artificial cavity on a thin stainless steel heating foil. The bubble shape and the temperature distribution of the heating foil were measured via high-speed imaging and infrared thermography at different gravity levels and during transition phases between these levels. The influence of gravity on bubble frequency and departure diameter was evaluated. The transient heat flux distribution was calculated by applying an energy balance at each pixel of the infrared temperature image. This heat flux distribution is presented for a complete bubble cycle (growing, detachment and rise), bubble coalescence, and satellite bubble merger.

RÉFÉRENCES

  1. Barthes, M., Raynard, C., Santini, R., and Tadrist, L., Experimental study of a single vapour bubble growth: Heat and mass transfer analysis-Influence of non-condensable presence on the onset of Marangoni convection. DOI: 10.1615/IHTC13.p12.90

  2. Bonjour, J., Clausse, M., and Lallemand, M., Experimental study of the coalescence phenomenon during nucleate pool boiling. DOI: 10.1016/S0894-1777(99)00044-8

  3. Carey, V. P., Liquid-Vapour Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment.

  4. Chen, T. and Chung, J. N., Coalescence of bubbles in nucleate boiling an microheaters. DOI: 10.1016/S0017-9310(01)00334-9

  5. Di Marco, P. and Grassi, W., Pool boiling in microgravity: assessed results and open issues.

  6. Esmaeeli, A. and Tryggvason, G., Computations of explosive boiling in microgravity.

  7. Fritz, W., Berechnung des Maximalvolumens von Dampfblasen.

  8. Fuchs, T., Kern, J., and Stephan, P., A transient nucleate boiling model including microscale effects and wall heat transfer. DOI: 10.1115/1.2349502

  9. Golobic, I., Petkovsek, J., Baselj, M., Papez, A., and Kenning, D. B. R., Experimental determination of transient wall temperature distribution close to growing vapor bubbles. DOI: 10.1007/s00231-007-0295-y

  10. Kim, J., Benton, J. F., and Wisniewski, D., Pool boiling heat transfer on small heaters: Effect of gravity and subcooling. DOI: 10.1016/S0017-9310(02)00108-4

  11. Lee, H. S. and Merte, H., Pool boiling mechanisms in microgravity.

  12. Malenkov, I. G., The frequency of vapor bubble separation as function of bubble size.

  13. Mukherjee, A. and Dhir, V. K., Study of lateral merger of vapor bubbles during nucleate pool boiling. DOI: 10.1115/1.1834614

  14. Reid, R. C., Rapid phase transitions from liquid to vapor. DOI: 10.1016/S0065-2377(08)60252-5

  15. Sodtke, C., Kern, J., Schweizer, N., and Stephan, P., High resolution measurements of wall temperature distribution underneath a single vapour bubble under low gravity conditions. DOI: 10.1016/j.ijheatmasstransfer.2005.07.054

  16. Stephan, P. and Hammer, J., A new model for nucleate boiling heat transfer.

  17. Stoica, V. and Stephan, P., Phase shift interferometry for accurate temperature measurement around a vapor bubble. DOI: 10.1080/08916150701229881

  18. Straub, J., Zell, M., and Vogel, B., Boiling under microgravity conditions.

  19. Vogel, B. and Straub, J., Single bubble experiments in pool boiling-Results from TEXUS 26.

  20. Wagner, E., Sodtke, C., Schweizer, N., and Stephan, P., Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements. DOI: 10.1007/s00231-006-0146-2

  21. Wagner, E., Stephan, P., Koeppen, O., and Auracher, H., High resolution temperature measurements at moving vapor/liquid and vapor/liquid/solid interfaces during bubble growth in nucleate boiling.

  22. Wagner, E., Hochauflosende Messungen beim Blasensieden von Reinstoffen und binaren Gemischen.


Articles with similar content:

The Influence of Single Bubble Growth and Bubble Coalescence on Boiling Heat Transfer
International Heat Transfer Conference 15, Vol.38, 2014, issue
Peter Stephan, Axel Sielaff
Simulation of Void Fraction Profile Evolution in Subcooled Nucleate Boiling in a Vertical Annulus with a Bubble-Tracking Model
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Ivo Kljenak, Borut Mavko
NUMERICAL SIMULATION OF THE DYNAMICS OF MULTIPLE BUBBLE MERGER DURING POOL BOILING UNDER REDUCED GRAVITY
Multiphase Science and Technology, Vol.18, 2006, issue 3
Dean Vijay K. Dhir, H. S. Aparajith, Gihun Son
BUBBLE DEPARTURE CHARACTERISTICS IN NANOFLUID FLOW BOILING
Multiphase Science and Technology, Vol.31, 2019, issue 4
Vivek Gupta, R. S. Singh, Nirupama Patra, Pradyumna Ghosh
INFLUENCE OF THE SURFACE STRUCTURE ON POOL BOILING HEAT TRANSFER
International Heat Transfer Conference 13, Vol.0, 2006, issue
A. Luke