Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Imprimer: 0276-1459
ISSN En ligne: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v24.i1.10
pages 1-45


Herve Lemonnier
DTN/SE2T/LIEX/ CEA/Grenoble, 38054 Grenoble Cedex 9, France
N. Coutris
Department of Mechanical Engineering, Clemson University, Clemson South Carolina 29634-0921, USA


The WAHA code aims at describing two-phase water hammers in piping systems with emphasis on the calculation of the mechanical loads induced on the pipes. A new two-fluid model is derived which is appropriate for studying the interaction of a deformable pipe with the flow it contains. The equations are provided in two different sets of variables: Eulerian and Lagrangian with respect to the pipe. The new equations are compared to those of the plain two-fluid model for a rectilinear pipe and obviously they do not seem to be of a different nature, though many new terms appear, the significance of which is shortly outlined. The theoretical derivation of these equations is aimed primarily at calculating reaction forces applied on a piping system from the results of one-dimensional thermal-hydraulic code for future inclusion in full form in the WAHA code.


  1. Alstadt, E., Carl, H., Prasser, H.-M., and Weiss, R., Fluid-structure interaction during artificially induced water hammmers in a tube with bend—Experiments and analysis. DOI: 10.1615/MultScienTechn.v20.i3-4.10

  2. Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics.

  3. Bergles, A., Collier, J. G., Delhaye, J. M., Hewitt, G. F., and Mayinger, F., Two-Phase Flow and Heat Transfer in the Power and Process Industries.

  4. Coutris, N., Dynamique des lignes, feuilles, filaments et membranes fluides.

  5. Coutris, N., Balance equations for fluid lines, sheets, filaments and membranes. DOI: 10.1016/0301-9322(93)90091-8

  6. Delhaye, J. M., Giot, M., and Riethmuller, M. L., Thermohydraulics of Two-Phase Flow Systems for Industrial Design and Nuclear Engineering.

  7. Downar-Zapolski, P., Bilicki, Z., Bolle, L., and Franco, J., The non-equilibrium relaxation model for one-dimensional flashing liquid flow. DOI: 10.1016/0301-9322(95)00078-X

  8. Dudlik, A., Prasser, H.-M., Apostolidis, A., and Bergant, A., Water hammer induced by fast acting valves—Experimental studies at pilot plant pipework. DOI: 10.1615/MultScienTechn.v20.i3-4.20

  9. Gale, J., Tiselj, I., and Horvat, A., Two-fluid model of the waha code for simulations of water hammer transients. DOI: 10.1615/MultScienTechn.v20.i3-4.40

  10. Hetsroni, G., Handbook of Multiphase Systems.

  11. Jung, J., Lyczkowski, R. W., Panchal, C. B., and Hassanein, A., Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. DOI: 10.1016/j.jbiomech.2005.06.023

  12. Lemonnier, H., An attempt to apply the homogeneous relaxation model to the wahaloads benchmark tests with interaction with the mechanical structure.

  13. Pontrelli, G., A multiscale approach for modelling wave propagation in an arterial segment. DOI: 10.1080/1025584042000205868

  14. Prasser, H.-M., Ezsol, G., Baranyai, G., and Suhnel, T., Spontaneous water hammers in a steam line in the case of cold water ingress. DOI: 10.1615/MultScienTechn.v20.i3-4.30

  15. Sankar, D. S., Two-phase non linear mathematical model for blood flow in asymmetric and axisymmetric stenosed arteries. DOI: 10.1016/j.ijnonlinmec.2010.09.011

  16. Serre, G. and Nika, P., Two-phase water-hammer simulation with the cathare code. DOI: 10.1615/MultScienTechn.v23.i1.30

  17. Srivastava, V. P. and Srivastava, R., Particulate suspension blood flow through a narrow catheterized artey. DOI: 10.1016/j.camwa.2009.01.041

  18. Tiselj, I., Private communication.

  19. Tiselj, I., Cerne, G., Horvat, A., Gale, J., Parzer, I., Giot, M., Seynhaeve, J.-M., Kucienska, B., and Lemonnier, H., WAHA3 code manual, wAHA Loads project report D10.

  20. Tiselj, I., Horvat, A., and Gale, J., Numerical scheme of the waha code. DOI: 10.1615/MultScienTechn.v20.i3-4.50