Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN Imprimer: 1947-5764
ISSN En ligne: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2020033041
pages 167-176

Radiofrequency Field-Induced Radiosensitization Is Not Correlated with Induction of Reactive Oxygen Species

Angela Chinhengo
Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
Antonio Serafin
Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
John Akudugu
Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa

RÉSUMÉ

The capacity of radiofrequency fields (RFFs) to modulate radiosensitivity in a variety of cells may render them useful as noninvasive agents for potentiating radiotherapy. Because ionizing radiation exerts its biological effectiveness via mediation by reactive oxygen species (ROS), any agent that increases ROS burden in a cellular system can be expected to enhance the cytotoxic effects of ionizing radiation. Therefore, it would be of significant interest to determine whether RFF exposure influences ionizing radiation-induced ROS production. In this study, we use four human cell lines, namely, MeWo and Bell (melanomas), DU145 (prostate carcinoma), and L132 (normal lung fibroblasts), to assess the role of RFF modulation of cellular production of ROS in altering radiosensitivity. We measure radiosensitivity and ROS activity using standard assays. Although RFF exposure seems to consistently increase radiation-induced ROS activity, the extent of enhanced ROS activity does not correlate with the degree of radiosensitization. To confirm the role of ROS in radiofrequency-mediated radiosensitization, a similar study of an expanded cohort of cell lines with a wider span of radiosensitivity is warranted.

RÉFÉRENCES

  1. Chinhengo A, Serafin A, Hamman B, Akudugu J. Electromagnetic fields induce frequency-dependent radioprotection andradiosensitization in in vitro cell cultures. PlasmaMed. 2018;8:163-75.

  2. Chinhengo A, Serafin A, Akudugu J. Comparison ofcellular sensitivity to a split radiation dose and a combination of a single radiation dose and electromagnetic field exposure. PlasmaMed. 2019;9:15-22.

  3. Miyakoshi J. Cellular and molecular responses to radio-frequency electromagnetic fields. Proc IEEE. 2013;101:1494-502.

  4. Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16:79-88.

  5. Dumas JF, Argaud L, Cottet-Rousselle C, Vial G, Gonzalez C, Detaille D, Leverve X, Fontaine E. Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. JBiol Chem. 2009;284:15117-25.

  6. Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish MA. ROS-modulated therapeutic approaches in cancertreatment. J CancerRes Clin Oncol. 2017;143:1789-809.

  7. Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer. Ann Rev Cancer Biol. 2017;1:79-98.

  8. Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, Inanami O. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med. 2012;53:260-70.

  9. Wallace SS. Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res. 1998;150:S60-79.

  10. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog Nucl Acid Res Mol Biol. 1988;35:95-125.

  11. Tateishi Y, Sasabe E, Ueta E, Yamamoto T. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation. Biochem Biophys Res Commun. 2008;366:301-7.

  12. Chinhengo A, Serafin A, Akudugu J. Radiofrequency fields preferentially enhance in vitro cellular radiosensitivity to large fractional doses in a p53-dependent manner. Plasma Med. 2020. doi: 10.1615/PlasmaMed.2020032818.

  13. Lopez-Lozaro M. Dual role of hydrogen peroxide in cancer: Possible relevance to cancer chemopre-vention and therapy. Cancer Lett. 2007;252:1-8.

  14. Pan J-S, Hong M-Z, Ren J-L. Reactive oxygen species: A double-edged sword in oncogenesis. World J Gastroenterol. 2009;15:1702-7.

  15. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295-322.

  16. Lai HC, Singh NP. Medical applications of electromagnetic fields. In: Jamieson IA, Holdstock P, editors. Electromagnetic phenomena and health-a continuing controversy? IOP Conference series: Earth and environmental science. London: IOP Publishing Ltd.; 2010.

  17. Morabito C, Guarnieri S, Fano G, Mariggio MA. Effects of acute and chronic low frequency elec-tromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol Biochem. 2010;24:947-58.

  18. Kovacic P, Somanathan R. Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res. 2010;30:214-26.

  19. Sarsour EH, Kalen AL, Xiao Z, Veenstra TD, Chaudhuri L, Venkataraman S, Reigan P, Buettner GR, Goswami PC. Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle. CancerRes. 2012;72:3807-16.


Articles with similar content:

Radiofrequency Field-Induced Radiosensitization Is Related to Reductions in Metabolic Activity
Plasma Medicine, Vol.9, 2019, issue 2
Antonio Serafin, John Akudugu, Angela Chinhengo
Radiosensitization by Radiofrequency Fields is Correlated with Micronucleus Yield and Proliferative Index
Plasma Medicine, Vol.10, 2020, issue 1
Antonio Serafin, John Akudugu, Angela Chinhengo
Molecular Parameters of Hyperthermia for Radiosensitization
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 3
Tej K. Pandita, Sukesh R. Bhaumik, Shruti Pandita
On the Mechanism of Cellular Toxicity in Breast Cancer by Ionizing Radiation and Chemotherapeutic Drugs
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 1
Vidhula Ahire, Kaushala Prasad Mishra, G. R. Kulkarni
Radiofrequency Fields Preferentially Enhance In Vitro Cellular Radiosensitivity to Large Fractional Doses in a p53-Dependent Manner
Plasma Medicine, Vol.9, 2019, issue 2
Antonio Serafin, John Akudugu, Angela Chinhengo