Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
TsAGI Science Journal

ISSN Imprimer: 1948-2590
ISSN En ligne: 1948-2604

TsAGI Science Journal

DOI: 10.1615/TsAGISciJ.2019031630
pages 429-442

INVESTIGATION OF CALCULATION ERROR FOR STRESS INTENSITY FACTORS APPLYING THE J-INTEGRAL METHOD

Mariya Alexandrovna Glebova
Central Aerohydrodynamic Institute (TsAGI), 1, Zhukovsky Str., Zhukovsky, Moscow Region, 140180, Russian Federation
Vyacheslav Ivanovich Grishin
Central Aerohydrodynamic Institute (TsAGI), Zhukovsky Str. 1, Zhukovsky, Moscow Region, 140180 Russia
Svetlana Vladimirovna Tsoy
Irkut Corporation, 68, Leningradsky prospect, Moscow, 125315, Russian Federation
Rostislav Viktorovich Voronkov
Central Aerohydrodynamic Institute (TsAGI), 1, Zhukovsky Str., Zhukovsky, Moscow Region, 140180, Russian Federation
Andrey Grigorievich Yashutin
Irkut Corporation, 68, Leningradsky Prospect, Moscow, 125315, Russian Federation

RÉSUMÉ

A method of improving the solution convergence when calculating stress intensity factors at crack tips is proposed. Examples of modeling and solving practical problems in determining the stress intensity factors in plates with various cracks are presented. The results are compared with analytical data.

RÉFÉRENCES

  1. Parton, V.Z. and Morozov, E.M., Mechanics of Elastic-Plastic Fracture: Fundamentals of Fracture Mechanics, Moscow: Izd-vo LKI, 2008.

  2. Kolosov, G.V., About One Application of Complex Variable Functions to Plane Problem of Mathematical Theory of Elasticity, Yuriev: Tipogr. Mattisena, 1909.

  3. Westergard, H.M., Stresses at a Crack, Size of the Crack and the Bending of Reinforced Concrete, J. Am. Concr. Inst, 5(2):93-103, 1993.

  4. Williams, M.L., On the Stress Distribution at the Base of a Stationary Crack, Trans. ASME J. Appl. Mech, 24(1):109-114, 1957.

  5. Murakami, Y., Stress Intensity Factors Handbook, vols. 1 and 2, Elmsford, NY: Pergamon Press, 1987.

  6. Morozov, E.M. and Nikishkov, G.P., Finite-Element Method in Fracture Mechanics, Moscow: Izd-vo LKI, 2008.

  7. Eleonsk, S.I., Odintsev, I.N., Pisarev, V.S., and Chernov, A.V., Investigation of Crack Propagation Process by Measurements of Local Deformation Response: I. Actual Stress Field, TsAGI Sci. J, 46(7):687-714, 2015.

  8. Pisarev, V.S., Matvienko, Y.G., Eleonsky, S.I., and Odintsev, I.N., Combining the Crack Compliance Method and Speckle Interferometry Data for Determination of Stress Intensity Factors and T-Stresses, Eng. Fract. Mech, 179:348-374, 2017.

  9. Dassault Systemes, Abaqus Theory Manual, Providence, RI: Dassault Systemes Simulia Corp., 2011.

  10. Tada, H., A Note on the Finite Width Corrections to the Stress Intensity Factor, Eng. Fract. Mech, 3(3):345-347, 1971.

  11. Isida, M., Analysis of Stress Intensity Factors for the Tension of a Centrally Cracked Strip with Stiffened Edges, Eng. Fract. Mech, 5(3):647-665,1973.

  12. Newman, J.C., An Improved Method of Collocation for the Stress Analysis of Cracked Plates with Various Shaped Boundaries, NASA TND-6376, pp. 1-45, 1971.

  13. Fett, T. and Munz, D., Stress Intensity Factors and Weight Functions, Southampton, U.K.: Computational Mechanics Publications, pp. 1-42, 1997.

  14. Bowie, O.L., Solutions of Plane Crack Problems by Mapping Techniques, in Method ofAnalysis and Solutions of Crack Problems, Mechanics of Fracture Mechanics of Fracture Series, vol. 1, G.C. Sih, Ed., Leiden, Netherlands: Noordhoof International Publishing, pp. 1-55,1972.

  15. Theocaris, P.S. and Ioakimidis, N.I., A Star-Shaped Array of Curvilinear Cracks in an Infinite Elastic Medium, Trans. ASME, Ser. E, J Appl. Mech., 44(4):619-624, 1997.


Articles with similar content:

NUMERICAL METHODS FOR DETERMINING TORSIONAL STIFFNESS OF PRISMATIC RODS
TsAGI Science Journal, Vol.48, 2017, issue 6
Vladimir Mikhailovich Uskov, Vasilii Vasil'evich Chedrik, Aleksandr Vasilievich Chedrik
ENERGY-BASED ANALYSIS OF TRANSVERSE CRACKING AND INDUCED DELAMINATION IN [S'/90n/S]s LAMINATES: A VARIATIONAL APPROACH
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
Ghasem Sadeghi, H. Hosseini-Toudeshky
ON THE HOMOGENEITY HYPOTHESIS, SCALE PARAMETERS OF LENGTH, AND ON THE EDGE EFFECT FOR THE ISOTROPIC COSSERAT CONTINUUM
Composites: Mechanics, Computations, Applications: An International Journal, Vol.2, 2011, issue 1
A. A. Adamov
DESIGN AND DYNAMIC ANALYSIS OF COMPOSITE WIND TURBINE TOWER STRUCTURES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 2
Yixuan Wang
EXPERIMENTAL INVESTIGATION AND MODELING OF THE THERMOCYCLING EFFECT ON THE MECHANICAL PROPERTIES OF THE CFRP
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 4
A. V. Artemiev, Yury Solyaev, Sergey A. Lurie, Lev N. Rabinskiy, D. Q. Nguen, A. A. Dudchenko