Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
ESCI SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN Imprimer: 1093-3611
ISSN En ligne: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.v5.i2.10
18 pages

Study of excited atomic states of hydrogen and chemical phenomena on liquid silicon target under a RF inductive thermal plasma torch

F. Krayem
ENSCP-UPMC Laboratory of plasma processing and surface treatment 11, rue Pierre et Marie Curie 75005 Paris - France
F. Bourg
ENSCP-UPMC Laboratory of plasma processing and surface treatment 11, rue Pierre et Marie Curie 75005 Paris - France
Daniel Morvan
Laboratoire de Genie des Precedes Plasmas Universite P. et M. Curie, ENSCP 11 rue P. et M. Curie 75005 Paris France
Jacques Amouroux
Laboratoire de Genie des Precedes Plasmas Universite P. et M. Curie, ENSCP 11 rue P. et M. Curie 75005 Paris France

RÉSUMÉ

The photovoltaic properties of silicon material are improved after a thermal and chemical treatment by inductive plasma Ar-H2. The diffusion length of minority carriers (LD) increases up to 200 mm despite a high dislocations concentration 106 cm-2 generated during the recrystallization of liquid silicon. The characterisation of different chemical phenomena responsible for such properties are determined by exodiffusion of hydrogen from solid silicon at high temperature and by analysis of the plasma excited species by emission spectroscopy. This study shows that the different states of atomic hydrogen produced in the electromagnetic field of the coil are responsible of the chemical properties of the plasma reacting with liquid silicon. The highly excited states of atomic hydrogen n=3 to n=8 of the Balmer series for hydrogen are identified by optical emission spectroscopy. The silicon dangling bonds react on dislocation with the hydrogen and are stable up to 1000 K.


Articles with similar content:

STANDARD THERMODYNAMIC FUNCTIONS OF DIATOMIC PRODUCTS OF THERMAL DECOMPOSITION OF SF6
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.4, 2000, issue 3
O. Zivny
WEAR RESISTANCE AND RADIATION TOLERANCE OF He+-IRRADIATED MAGNETRON SPUTTERED TiAlN COATINGS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.18, 2014, issue 1-2
F. F. Komarov, Stanislav Konstantinov, V. V. Pilko, V. A. Kukareko
HYDROGENATION AND PURIFICATION OF SILICON BY RF PLASMA
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.9, 2005, issue 3
M. Nikravech, Jacques Amouroux, A. Soric, Sergey V. Dresvin, S. Darwiche, Daniel Morvan, E. Francke, M. Benmansour
CHARACTERISATION OF PLASMAS PRODUCED BY THE "TORCHE A INJECTION AXIALE"
Progress in Plasma Processing of Materials, 1997, Vol.1, 1997, issue
E. A. H. Timmermans, J. Jonkers, L. J. M. Selen, Joost J. A. M. van der Mullen, D. C. Schram
THE INFLUENCE OF SOLUTION COMPONENT TRANSFER TO THE PLASMA ON GAS DISCHARGE PROPERTIES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.11, 2007, issue 4
A. I. Maximov, A. V. Khlyustova