Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 3.259 Facteur d'impact sur 5 ans: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016018677
pages 57-81

A MULTIGRID MULTILEVEL MONTE CARLO METHOD USING HIGH-ORDER FINITE-VOLUME SCHEME FOR LOGNORMAL DIFFUSION PROBLEMS

Prashant Kumar
CWI-Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Cornelis W. Oosterlee
CWI-Centrum Wiskunde & Informatica, Amsterdam, The Netherlands; Delft University of Technology, Delft Institute of Applied Mathematics, Delft, The Netherlands
Richard P. Dwight
Aerodynamics Group, Faculty of Aerospace, TU Delft, P.O. Box 5058, 2600GB Delft, The Netherlands

RÉSUMÉ

The aim of this paper is to show that a high-order discretization can be used to improve the convergence of a multilevel Monte Carlo method for elliptic partial differential equations with lognormal random coefficients in combination with the multigrid solution method. To demonstrate this, we consider a fourth-order accurate finite-volume discretization. With the help of the Matérn family of covariance functions, we simulate the coefficient field with different degrees of smoothness. The idea behind using a fourth-order scheme is to capture the additional regularity in the solution introduced due to higher smoothness of the random field. Second-order schemes previously utilized for these types of problems are not able to fully exploit this additional regularity. We also propose a practical way of combining a full multigrid solver with the multilevel Monte Carlo estimator constructed on the same mesh hierarchy. Through this integration, one full multigrid solve at any level provides a valid sample for all the preceding Monte Carlo levels. The numerical results show that the fourth-order multilevel estimator consistently outperforms the second-order variant. In addition, we observe an asymptotic gain for the standard Monte Carlo estimator.


Articles with similar content:

A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR LINEAR RANDOM PDES
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 3
Johannes Neumann, John Schoenmakers, Martin Eigel, Felix Anker, Christian Bayer
Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with Chemically Reactive Boundary
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
Srdjan Simunovic, Sudib Kumar Mishra, George Frantziskonis, Phani Nukala, Sreekanth Pannala, Rodney O. Fox, Pierre A. Deymier, C. Stuart Daw
COMPUTING GREEN'S FUNCTIONS FOR FLOW IN HETEROGENEOUS COMPOSITE MEDIA
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
David A. Barajas-Solano, Daniel M. Tartakovsky
A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Miroslav Stoyanov, Clayton G. Webster
A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J. H. Law