Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 3.259 Facteur d'impact sur 5 ans: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016013870
pages 19-33

AN EFFICIENT MESH-FREE IMPLICIT FILTER FOR NONLINEAR FILTERING PROBLEMS

Feng Bao
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA
Yanzhao Cao
Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849; School of Mathematics, Sun Yat Sun University, China
Clayton G. Webster
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA
Guannan Zhang
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA

RÉSUMÉ

In this paper, we propose a mesh-free approximation method for the implicit filter developed in Bao et al., Commun. Comput. Phys., 16(2):382-402, 2014, which is a novel numerical algorithm for nonlinear filtering problems. The implicit filter approximates conditional distributions in the optimal filter over a deterministic state space grid and is developed from samples of the current state obtained by solving the state equation implicitly. The purpose of the mesh-free approximation is to improve the efficiency of the implicit filter in moderately high-dimensional problems. The construction of the algorithm includes generation of random state space points and a mesh-free interpolation method. Numerical experiments show the effectiveness and efficiency of our algorithm.


Articles with similar content:

A BLOCK CIRCULANT EMBEDDING METHOD FOR SIMULATION OF STATIONARY GAUSSIAN RANDOM FIELDS ON BLOCK-REGULAR GRIDS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Min Ho Park, M.V. Tretyakov
GENERALIZED MULTISCALE FINITE ELEMENT METHODS: OVERSAMPLING STRATEGIES
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 6
Juan Galvis, Michael Presho, Yalchin Efendiev, Guanglian Li
Adaptive Filtration with Constraints on Estimated Parameters
Journal of Automation and Information Sciences, Vol.38, 2006, issue 5
Elena V. Podladchikova, Nina A. Naroditskaya, Vladimir N. Podladchikov
THE PREDICTION OF PLANE COUETTE FLOW FOR A FENEFLUID USING A REDUCED BASIS APPROXIMATION OF THE FOKKER-PLANCK EQUATION
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 1
G. M. Leonenko, T. N. Phillips
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung