Abonnement à la biblothèque: Guest
Critical Reviews™ in Biomedical Engineering

Publication de 6  numéros par an

ISSN Imprimer: 0278-940X

ISSN En ligne: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Staggered Nitinol Wire Actuator Array for High Linear Displacement and Force-to-Mass Ratio

Volume 47, Numéro 2, 2019, pp. 121-129
DOI: 10.1615/CritRevBiomedEng.2019026515
Get accessGet access

RÉSUMÉ

We present the design and performance of a unique Nitinol (NiTi) actuator design for high linear displacement and force generation through joule heating. The device is comprised of a staggered linear array of NiTi in wire form that, as a shape memory alloy, can achieve linear displacement through material phase change when heated. This change allows the crystal lattice within the material to displace/adjust. The design results in strain levels of 20.4% that are comparable to those of biological muscles and provides potential for additional strain. Three- to seven-staggered NiTi wires are tested to demonstrate the different levels of strain that are achieved with a range of wires in a staggered array. In addition, we measure and compare force generated to the mass of each wire to show system force-to-mass ratio. The effective force to mass for the system is greater than 5500 combined with a seven-wire staggered array. The device shows that a lightweight, high-strain actuator can be developed, and our research demonstrates its potential use in prosthetic actuation.

RÉFÉRENCES
  1. Cura VO, Cunha FL, Aguiar ML, Cliquet A, Jr. , Study of the different types of actuators and mechanisms for upper limb prostheses. Artificial Org. 2003 Jun;27(6):507–16.

  2. Jani JM, Leary M, Subic A, Gibson MA. , A review of shape memory alloy research, applications and opportunities. Mater Des. 2014 Apr 1;56:1078–113.

  3. An SM, Ryu J, Cho M, Cho KJ. , Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model. Smart Mater Struct. 2012 Apr 24;21(5):055009.

  4. Duerig TW, Pelton A, Stöckel D. , An overview of nitinol medical applications. Mater Sci Eng A. 1999 Dec 15;273:149–60.

  5. Kuribayashi K. , A new actuator of a joint mechanism using TiNi alloy wire. Int J Robotics Res. 1986 Jan;4(4): 47–58.

  6. Van Humbeeck J. , Shape memory alloys: A material and a technology. Adv Eng Mater. 2001 Nov;3(11):837–50.

  7. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, de Andrade MJ, Göktepe F, Göktepe Ö. , Artificial muscles from fishing line and sewing thread. Science. 2014 Feb 21;343(6173): 868–72.

  8. Andrianesis K, Tzes A. , Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. In: Biomedical Robotics and Biomechatronics, 2008. Proceedings of the 2nd IEEE RAS & EMBS International Conference; 2008 Oct 19; Scottsdale, Arizona IEEE; 2008 pp. 517–22.

  9. El Kady A, Taher MF. , A shape memory alloy actuated anthropomorphic prosthetic hand: Initial experiments. In: Biomedical Engineering (MECBME), 2011. Proceedings of the 1st Middle East Conference; 2011 Feb 21; Sharjah, United Arab Emirates. IEEE; 2011. pp.41–4.

  10. Low C, Kasim MA, Mansur MM, Jaafar R, Jaffar A, Evaluation of shape memory alloy wire for applications in hand prosthesis. New challenges for product and production engineering. In: First Joint International Symposium on System-Integrated Intelligence; 2012 June 27–29; Hannover, Germany; 2012. pp. 40–2.

  11. Ahmed MA, Taher MF, Metwalli SM. , Shape memory alloy actuator system optimization for new hand prostheses. World Acad Sci Eng Technol; Int J Med Health Biomed Bioeng Pharm Eng. 2012 Jan 21;6(1):18–23.

  12. Stirling L, Yu CH, Miller J, Hawkes E, Wood R, Goldfield E, Nagpal R. , Applicability of shape memory alloy wire for an active, soft orthotic. J Mater Eng Perform. 2011 Jul 1;20(4–5):658–62.

  13. De Laurentis KJ, Fisch A, Nikitczuk J, Mavroidis C., Optimal design of shape memory alloy wire bundle actuators. ICRA’02: Proceedings of the IEEE International Conference on Robotics and Automation; 2002; Washington, D.C. IEEE; 2002 May 11–15. pp. 2363–8.

  14. Romano R, Tannuri EA. , Modeling, control and experimental validation of a novel actuator based on shape memory alloys. Mechatronics. 2009 Oct 1;19(7):1169–77.

  15. Doria M, Birglen L. , Design of an underactuated compliant gripper for surgery using nitinol. J Med Devices. 2009 Mar 1;3(1):011007.

  16. Song G. , Design and control of a nitinol wire actuated rotary servo. Smart Mater Struct. 2007 Sep 5;16(5):1796.

  17. Kaplanoglu E. , Design of shape memory alloy-based and tendon-driven actuated fingers towards a hybrid anthropomorphic prosthetic hand. Int J Adv Robotic Syst. 2012 Sep 20;9(3):77.

  18. Low CY, Kasim MA, Koch T, Dumitrescu R, Yussof H, Jaafar R, Jaffar A, Aqilah A, Ng KM. , Hybrid-actuated finger prosthesis with tactile sensing. Int J Adv Robotic Syst. 2013 Oct 14;10(10):351.

  19. Andrianesis K, Tzes A. , Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J Intel Robotic Syst. 2015 May 1;78(2):257–89.

  20. O’Toole KT, McGrath MM. , Mechanical design and theoretical analysis of a four fingered prosthetic hand incorporating embedded SMA bundle actuators. In: Proceedings of the World Academy of Science, Engineering, and Technology; 2007 Nov;25:142–9.

  21. Hibbeler, RC. , Mechanics of Materials. 7th ed. Pearson Prentice Hall: Upper Saddle River, NJ; 2008.

  22. Harrington WF. , On the origin of the contractile force in skeletal muscle. Proc Natl Acad Sci. 1979 Oct 1;76(10): 5066–70.

  23. Callister WD. , Materials science and engineering: An introduction. 7th ed. New York: John Wiley and Sons; 2007.

  24. Shabalovskaya SA. , Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Biomed Mater Eng. 2002 Jan 1;12(1):69–109.

  25. Mahdavi SH, Bentley PJ. , An evolutionary approach to damage recovery of robot motion with muscles. In: European Conference on Artificial Life; 2003 Sep 14; Dortmund, Germany; Berlin: Springer; 2003. pp. 248–55.

  26. Farias V, Solis L, Melendez L, Garcia C, Velazquez R. , A four-fingered robot hand with shape memory alloys. AFRICON’ 09; 2009 Sep 23; Nairobi, Kenya; IEEE; 2009. pp. 1–6.

  27. Costanza G, Tata ME, Calisti C. , Nitinol one-way shape memory springs: Thermomechanical characterization and actuator design. Sensors Actuat A Physical. 2010 Jan 1;157(1):113–7.

  28. Yates SJ, Kalamkarov AL. , Experimental study of helical shape memory alloy actuators: Effects of design and operating parameters on thermal transients and stroke. Metals. 2013 Feb 18;3(1):123–49.

CITÉ PAR
  1. Toptas Ersin, Celebi Mehmet Fatih, Ersoy Sezgin, Measurement of temperature and displacement with NiTi actuators under certain electrical conditions, Journal of Measurements in Engineering, 9, 2, 2021. Crossref

  2. Sibirev A., Belyaev S., Resnina N., The influence of counter-body stiffness on working parameters of NiTi actuator, Sensors and Actuators A: Physical, 319, 2021. Crossref

  3. Sibirev Aleksei, Belyaev Sergey, Resnina Natalia, Influence of preliminary straining on the recovery stress in TiNi shape memory alloy working element, Letters on Materials, 11, 2, 2021. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain