Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volumes:
Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v38.i5.10
pages 393-433

A New Perspective for Stem-Cell Mechanobiology: Biomechanical Control of Stem-Cell Behavior and Fate

Igor A. Titushkin
Bioengineering Department, University of Illinois, Chicago, USA
Jennifer Shin
Departments of Mechanical Engineering and of Brain and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
Michael Cho
Department of Bioengineering, University of Illinois, Chicago, IL, USA

RÉSUMÉ

Biomechanics is known to play an important role in cell metabolism. Cell phenotype, tissue-specific functions, and fate critically depend on the extracellular mechanical environment. The mechanical properties of the cell itself, such as cytoskeleton elasticity, membrane tension, and adhesion strength, may also play an important role in cell homeostasis and differentiation. Pluripotent bone marrow-derived human mesenchymal stem cells, for example, can be differentiated into many tissue-specific lineages. While cellular biomechanical properties are significantly altered during stem-cell specification to a particular phenotype, the complexity of events associated with transformation of these precursor cells leaves many questions unanswered about morphological, structural, proteomic, and functional changes in differentiating stem cells. A thorough understanding of stem-cell behavior would allow the development of more effective approaches to the expansion of stem cells in vitro and the regulation of their commitment to a specific phenotype. Control of cell behaviors might be feasible through manipulation of the cellular biomechanical properties using various external physical stimuli, including electric fields, mechanical stimuli, and genetic manipulation of the expression of particular genes. Biomechanical regulation of stem-cell differentiation can greatly minimize the number of chemicals and growth factors that would otherwise be required for composite tissue engineering. Determination and the appropriate use of the known physicochemical cues will facilitate current research effort toward designing and engineering functional tissue constructs.


Articles with similar content:

Molecular Signaling in Bone Regeneration
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 2
Dafna Benayahu, A. Yaffe, I. Binderman, H. Bahar
Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells
Critical Reviews™ in Biomedical Engineering, Vol.43, 2015, issue 4
Jie Liang, Gamze Gursoy, Youfang Cao, Anna Terebus, Jieling Zhao, Hammad Naveed
Gene Expression in Stem Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 4
Yu Liang, Criss Walworth, Iain Russell, Caifu Chen
Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 1
Shuying Yang, Wei Chen, Carrie S. Soltanoff, Yi-Ping Li
Events of Molecular Changes in Epithelial-Mesenchymal Transition
Critical Reviews™ in Eukaryotic Gene Expression, Vol.26, 2016, issue 2
Srishti Kotiyal, Susinjan Bhattacharya