Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volumes:
Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2018028368
pages 249-276

The Concepts and Applications of Fractional Order Differential Calculus in Modeling of Viscoelastic Systems: A Primer

Mohammad Amirian Matlob
Biomathematics Laboratory, Department of Applied Mathematics, Tarbiat Modares University, Iran
Yousef Jamali
Biomathematics Laboratory, Department of Applied Mathematics, Tarbiat Modares University, Iran; Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

RÉSUMÉ

Viscoelasticity and other related phenomena are of great importance in the study of mechanical properties of materials, especially biological materials. Certain materials demonstrate some complicated behavior under mechanical tests that cannot be described by a standard linear equation (SLE), mostly due to the shape memory effect during the deformation phase. Recently, researchers have been making use of fractional calculus (FC) in order to probe viscoelasticity of such materials accurately. FC is a powerful tool for modeling complicated phenomena. In this tutorial paper, it is sought to provide clear descriptions of this powerful tool and its techniques and implementation. It is endeavored to keep the details to a minimum while still conveying a good idea of what and how can be done with this powerful tool. The reader will be provided with the basic techniques that are used to solve the fractional equations analytically and/or numerically. More specifically, simulating the shape memory phenomena with this powerful tool will be studied from different perspectives, and some physical interpretations are made in this regard. This paper is also a review of fractional order models of viscoelastic phenomena that are widespread in bioengineering. Thus, in order to show the relationship between fractional models and SLEs, a new fractal system comprising spring and damper elements is considered and the constitutive equation is approximated with a fractional element. Finally, after a brief literature review, two fractional models are utilized to investigate the viscoelasticity of the cell and a comparison is made between the findings and the experimental data from the previous models. Verification results indicate that the fractional model not only matches well with the experimental data but also can be a good substitute for previously used models.

RÉFÉRENCES

  1. Boyer CB, Merzbach UC. A history of mathematics. Hoboken (NJ): John Wiley; 2011.

  2. Dalir M, Bashour M. Applications of fractional calculus. Appl Math Sci. 2010;4(21):1021-32.

  3. Magin RL. Fractional calculus in bioengineering. Redding: Begell House; 2006.

  4. Gamma function [website on the internet]. Wikipedia [cited 2019 Jan 7]. Available from: https://en.wikipedia.org/wiki/Gamma_function.

  5. Herrmann R. Fractional Calculus-An introduction for physicists. Singapore: World Scientific Publishing; 2011.

  6. Diethelm K. The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. New York: Springer Science & Business Media; 2010.

  7. Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophys J Int. 1967;13(5):529-39.

  8. Grigoletto EC, de Oliveira EC. Fractional versions of the fundamental theorem of calculus. Appl Math. 2013;4(7):23-33.

  9. Diethelm K. Efficient solution of multi-term fractional differential equations using P (EC) m E methods. Computing. 2003;71(4):305-19.

  10. Diethelm K, Ford NJ, Freed AD. Detailed error analysis for a fractional Adams method. Numer Alg. 2004;36(1):31-52.

  11. Meerschaert MM, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl Num Math. 2006;56(1):80-90.

  12. Jafari H, Khalique CM, Nazari M. An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation. Math Comput Model. 2012;55(5-6):1782-6.

  13. Jiang H, Liu F, Turner I, Burrage K. Analytical solutions for the multi-term timespace Caputo-Riesz fractional advection-diffusion equations on a finite domain. J Math Anal Appl. 2012;389(2):1117.

  14. Gulsu M, Ozturk Y, Anapal A. Numerical approach for solving fractional relaxation oscillation equation. Appl Math Model. 2013;37(8):5927-37.

  15. Bu W, Tang Y, Yang J. Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J Comput Phys. 2014;276:26-38.

  16. Bu W, Tang Y, Wu Y, Yang J. Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. J Comput Phys. 2015;293:264-79.

  17. Jin B, Lazarov R, Liu Y, Zhou Z. The Galerkin finite element method for a multi-term time-fractional diffusion equation. J Comput Phys. 2015;281:825-43.

  18. Ferry JD, Ferry JD. Viscoelastic properties of polymers: Hoboken (NJ): John Wiley; 1980.

  19. McCrum NG, Buckley C, Bucknall CB, Bucknall C. Principles of polymer engineering: New York: Oxford University Press; 1997.

  20. Tanner RI. Engineering rheology. Oxford: Oxford University Press; 2000.

  21. Glockle W, Nonnenmacher TF. Fractional relaxation and the time-temperature superposition principle. Rheol Acta. 1994;33(4):337-43.

  22. Schiessel H, Metzler R, Blumen A, Nonnenmacher T. Generalized viscoelastic models: their fractional equations with solutions. J Phys A: Math Gen. 1995;28(23):6567-6584.

  23. Magin RL, Royston TJ. Fractional-order elastic models of cartilage: A multi-scale approach. Commun Nonlinear Sci Numer Sim. 2010;15(3):657-64.

  24. Caputo M, Mainardi F. A new dissipation model based on memory mechanism. Pure Appl Geophys. 1971;91(1):134-47.

  25. Bagley RL, Torvik J. Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 1983;21(5):741-8.

  26. Rogers L. Operators and fractional derivatives for viscoelastic constitutive equations. J Rheol. 1983;27(4):351-72.

  27. Bagley RL, Torvik PJ. On the fractional calculus model of viscoelastic behavior. J Rheol. 1986;30(1):133-55.

  28. Koh CG, Kelly JM. Application of fractional derivatives to seismic analysis of baseisolated models. Earthquake Eng Struct Dyn. 1990;19(2):229-41.

  29. Makris N, Constantinou M. Fractional-derivative Maxwell model for viscous dampers. J Struct Eng. 1991;117(9):2708-24.

  30. Friedrich C, Braun H. Generalized Cole-Cole behavior and its rheological relevance. Rheol Acta. 1992;31(4):309-22.

  31. Fenander A. Modal synthesis when modeling damping by use of fractional derivatives. AIAA J. 1996;34(5):1051-8.

  32. Pritz T. Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vibrat. 1996;195(1):103-15.

  33. Shimizu N, Zhang W. Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C. 1999;42(4):825-37.

  34. Rossikhin YA, Shitikova M. Analysis of dynamic behaviour of viscoelastic rods whose rheological models contain fractional derivatives of two different orders. ZAMM J Appl Math Mech. 2001;81(6):363-76.

  35. Mainardi F, Spada G. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J Spec Top. 2011;193(1):133-60.

  36. Barpi F, Valente S. Creep and fracture in concrete: a fractional order rate approach. Eng Fract Mech. 2002;70(5):611.

  37. Craiem D, Rojo F, Atienza J, Guinea G, Armentano RL. Fractional calculus applied to model arterial viscoelasticity. Lat Am Appl Res. 2008;38(2):141-5.

  38. Lewandowski R, Chorazyczewski B. Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput Struct. 2010;88(1-2):1-17.

  39. Meral F, Royston T, Magin R. Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul. 2010;15(4):939-45.

  40. Lewandowski R, Pawlak Z. Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives. J Sound Vibrat. 2011;330(5):923-36.

  41. Celauro C, Fecarotti C, Pirrotta A, Collop A. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Constr Build Mater. 2012;36:458-66.

  42. Grzesikiewicz W, Wakulicz A, Zbiciak A. Non-linear problems of fractional calculus in modeling of mechanical systems. Int J Mech Sci. 2013;70:90-8.

  43. Dai Z, Peng Y, Mansy HA, Sandler RH, Royston TJ. A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med Eng Phys. 2015;37(8):752-8.

  44. Jozwiak B, Orczykowska M, Dziubiski M. Fractional generalizations of maxwell and Kelvin-Voigt models for biopolymer characterization. PLoS One. 2015;10(11):e0143090.

  45. Craiem D, Magin RL. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys Biol. 2010;7(1):013001.

  46. Lakes RS. Viscoelastic solids. Boca Raton (FL): CRC Press; 1998.

  47. Schiessel H, Blumen A. Mesoscopic pictures of the sol-gel transition: ladder models and fractal networks. Macromolecules. 1995;28(11):4013-9.

  48. West BJ, Bologna M, Grigolini P. Fractional rheology. Physics of fractal operators. Springer; 2003. p. 235-70.

  49. Djordjevic' VD, Jaric' J, Fabry B, Fredberg JJ, Stamenovic' D. Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng. 2003;31(6):692-9.

  50. Carmichael B, Babahosseini H, Mahmoodi S, Agah M. The fractional viscoelastic response of human breast tissue cells. Phys Biol. 2015;12(4):046001.

  51. Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims J, Wang N. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol. 1994;150:173-224.

  52. Chicurel ME, Chen CS, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol. 1998;10(2):232-9.

  53. Zemel A, De R, Safran SA. Mechanical consequences of cellular force generation. Curr Opin Solid State Mater Sci. 2011;15(5):169-76.

  54. Alberts B, Bray D, Hopkin K, Johnson AD, Lewis J, Raff M, Roberts K, Walter P. Essential cell biology. 4th ed. New York: Garland Science; 2015.

  55. Stamenovi D, Coughlin MF. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. J Theor Biol. 1999;201(1):63-74.

  56. Maurin B, Canadas P, Baudriller H, Montcourrier P, Bettache N. Mechanical model of cytoskeleton structuration during cell adhesion and spreading. J Biomech. 2008;41(9):2036-41.

  57. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J. 1998;75(4):2038-49.

  58. Chen T-J, Wu C-C, Su F-C. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review. Med Eng Phys. 2012;34(10):1375-86.

  59. Coughlin MF, Stamenovic D. A prestressed cable network model of the adherent cell cytoskeleton. Biophys J. 2003;84(2):1328-36.

  60. Kojima H, Ishijima A, Yanagida T. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Nat Acad Sci. 1994;91(26):12962-6.

  61. Kas J, Strey H, Tang J, Finger D, Ezzell R, Sackmann E, Janmey PA. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J. 1996;70(2):609-25.

  62. Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. New York: Elsevier; 1998.

  63. Kilbas AA, Srivastava HM, Trujillo JJ, editors. Theory and applications of fractional differential equations, vol. 204. London: Elsevier. 2006.

  64. Brown JW. Complex variables and applications. Boston: McGraw-Hill Higher Education. 2009.

  65. Schiessel H, Blumen A. Hierarchical analogues to fractional relaxation equations. J Phys A: Math Gen. 1993;26(19):5057-69.


Articles with similar content:

Computational Modeling of Bone Cells and Their Biomechanical Behaviors in Responses to Mechanical Stimuli
Critical Reviews™ in Eukaryotic Gene Expression, Vol.29, 2019, issue 1
Jianghui Dong, Cory J. Xian, Liping Wang
Subject-Specific p-FE Analysis of the Proximal Femur Utilizing Micromechanics-Based Material Properties
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Zohar Yosibash, Nir Trabelsi, Christian Hellmich
A Hierarchical Approach to Finite Element Modeling of the Human Spine
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 4
Alistair Templeton, Michael Liebschner
Fractional Calculus in Bioengineering, Part 1
Critical Reviews™ in Biomedical Engineering, Vol.32, 2004, issue 1
Richard L. Magin
Finite Element Approach Used on the Human Tibia: A Study on Spiral Fractures
Journal of Long-Term Effects of Medical Implants, Vol.19, 2009, issue 4
R. N. Dehankar, Akash M. Langde