Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2019029194
pages 277-294

Computational Methods for Skeletal Muscle Strain Injury: A Review

Yujiang Xiang
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078
Asif Arefeen
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078


In this article, we review skeletal muscle strain injury with computational methods for strain injury analysis, prevention, and recovery. We first review the theory of muscle strain injury at both the microscopic and macroscopic levels. Next, we discuss simulation models, including kinematics, dynamics, and finite-element method. Finally, we introduce predictive approaches for muscle strain injury prevention. Topics including recovery, rehabilitation, muscle-tendon remodeling, and experimental methods are described. We also suggest areas for future research.


  1. Souza J, Gottfried C. Muscle injury: Review of experimental models. J Electromyogr Kinesiol. 2013;23(6):1253-60.

  2. Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J Sport Health Sci. 2012;1(2):92-101.

  3. Shin DD, Hodgson JA, Chi SW, Chen JS, Edgerton VR, Sinha S. Prediction from finite element modeling of non-uniform, region-dependent strain of muscle fibers during passive and eccentric rotation of the ankle confirmed by phase contrast MRI. Proceedings of the 17th Scientific Meeting and Exhibition of International Society for Magnetic Resonance in Medicine; 2009 April 18-24; Honolulu, Hawaii.

  4. Wan BJ, Shan GB. Biomechanical modeling as a practical tool for predicting injury risk related to repetitive muscle lengthening during learning and training of human complex motor skills. Springerplus. 2016;5:441.

  5. Odegard GM, Donahue TL, Morrow DA, Kaufman KR. Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J Biomech Eng. 2008;130(6):061017.

  6. Erdemir A, McLean S, Herzog W, van den Bogert AJ. Model-based estimation of muscle forces exerted during movements. Clin Biomech. 2007;22(2):131-54.

  7. Zajac FE. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17(4):359-411.

  8. Proske U, Morgan DL, Brockett CL, Percival P. Identifying athletes at risk of hamstring strains and how to protect them. Clin Exp Pharmacol Physiol. 2004;31(8): 546-50.

  9. Lieber RL, Friden J. Mechanisms of muscle injury gleaned from animal models. Am J Phys Med Rehab. 2002;81(11):S70-9.

  10. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sport Exer. 2004;36(3):379-87.

  11. Proske U, Morgan DL. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(2):333-45.

  12. Armstrong RB. Initial events in exercise-induced muscular injury. Med Sci Sport Exer. 1990;22(4):429-35.

  13. Evans WJ, Cannon JG. The metabolic effects of exercise-induced muscle damage. Exer Sport Sci Rev. 1991;19:99-125.

  14. Blemker SS, Rehorn MR, Fiorentino N. 3D Muscle modeling with application to muscle strain injury. The 34th Annual Meeting of the American Society of Biomechanics; 2010 August 18-21; Providence, Rhode Island; pp. 18-21.

  15. Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555-62.

  16. Fiorentino NM, Rehorn MR, Chumanov ES, Thelen DG, Blemker SS. Computational models predict larger muscle tissue strains at faster sprinting speeds. Med Sci Sport Exer. 2014;46(4):776-86.

  17. Lieber RL, Friden J. Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol. 1993;74(2):520-6.

  18. Maffulli N, Del Buono A. Muscle strains: Pathophysiology and new classification models. Berlin: Springer-Verlag; 2015.

  19. Schache AG, Wrigley TV, Baker R, Pandy MG. Biomechanical response to hamstring muscle strain injury. Gait Posture. 2009;29(2):332-8.

  20. Schache AG, Kim HJ, Morgan DL, Pandy MG. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture. 2010;32(1):136-40.

  21. Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sport Exer. 2012;44(4):647-58.

  22. Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sport Exer. 2005;37(11):1931-8.

  23. Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, Young M, Heiderscheit BC. Hamstring muscle kinematics during treadmill sprinting. Med Sci Sport Exer. 2005;37(1):108-14.

  24. Blemker SS, Pinsky PM, Delp SL. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech. 2005;38(4):657-65.

  25. Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43(13):2574-81.

  26. Cloutier A, Boothby R, Yang J. Motion capture experiments for validating optimization-based human models. HCI International 3rd International Conference on Digital Human Modeling; 2011 July 9-14; Orlando, Florida; pp. 59-68.

  27. Xiang Y, Rahmatalla S, Arora JS, Abdel-Malek K. Enhanced optimisation-based inverse kinematics methodology considering joint discomfort. Int J Hum Factors Model Simul. 2011;2(1/2):111-26.

  28. Liu Y, Sun YL, Zhu WF, Yu JB. The late swing and early stance of sprinting are most hazardous for hamstring injuries. J Sport Health Sci. 2017;6(2):133-6.

  29. Pappas GP, Asakawa DS, Delp SL, Zajac FE, Drace JE. Nonuniform shortening in the biceps brachii during elbow flexion. J Appl Physiol. 2002;92(6):2381-9.

  30. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Meth Appl Mech Eng. 2005;194(39-41):4135-95.

  31. Zhou X, Lu J. NURBS-Based Galerkin method and application to skeletal muscle modeling. Proceedings of the ACM Symposium on Solid and Physical Modeling; 2005 June 13-15; Cambridge, Massachusetts; ACM New York; pp. 71-8.

  32. Lu J, Zhou XL. Cylindrical element: Isogeometric model of continuum rod. Comput Meth Appl Mech Eng. 2011;200(1-4):233-41.

  33. Spyrou LA, Aravas N. Muscle and tendon tissues: Constitutive modeling and computational issues. J Appl Mech. 2011;78(4):041015.

  34. Wu JZ, Herzog W, Cole GK. Modeling dynamic contraction of muscle using the cross-bridge theory. Math Biosci. 1997;139(1):69-78.

  35. Kojic M, Mijailovic S, Zdravkovic N. Modelling of muscle behavior by the finite element method using Hill's three-element model. Int J Numer Meth Eng. 1998;43:941-53.

  36. Oomens CWJ, Maenhout M, van Oijen CH, Drost MR, Baaijens FP. Finite element modelling of contracting skeletal muscle. Philos Trans R Soc Lond B Biol Sci. 2003;358(1437):1453-60.

  37. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Mol Bio. 1957;7:255-318.

  38. Johansson T, Meier P, Blickhan R. A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol. 2000;206(1):131-49.

  39. Lemos RR, Epstein M, Herzog W, Wyvill B. A framework for structured modeling of skeletal muscle. Comput Meth Biomech Biomed Eng. 2004;7(6):305-17.

  40. Liang Y, McMeeking RM, Evans AG. A finite element simulation scheme for biological muscular hydrostats. J Theor Biol. 2006;242(1):142-50.

  41. Dick TJM, Biewener AA, Wakeling JM. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images. J Exp Biol. 2017;220(9):1643-53.

  42. Shourijeh MS, McPhee J. Forward dynamic optimization of human gait simulations: A global parameterization approach. J Comput Nonlin Dyn. 2014;9(3):031018.

  43. Shourijeh MS, Smale KB, Potvin BM, Benoit DL. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations. J Biomech. 2016;49(9):1718-23.

  44. Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human gait. J Biomech. 2010;43(6):1055-60.

  45. De Groote F, Kinney AL, Rao AV, Fregly BJ. Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann Biomed Eng. 2016;44(10):2922-36.

  46. Lin YC, Pandy MG. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J Biomech. 2017;59:1-8.

  47. Farahani SD, Andersen MS, de Zee M, Rasmussen J. Optimization-based dynamic prediction of kinematic and kinetic patterns for a human vertical jump from a squatting position. Multibody Syst Dyn. 2016;36(1):37-65.

  48. Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans Biomed Eng. 2007;54(9):1687-95.

  49. Garcia-Vallejo D, Schiehlen W. 3D Simulation of human walking by parameter optimization. Arch Appl Mech. 2012;82(4):533-56.

  50. Xiang YJ, Arora JS, Abdel-Malek K. Optimization-based prediction of asymmetric human gait. J Biomech. 2011;44(4):683-93.

  51. Xiang YJ, Arora JS, Rahmatalla S, Abdel-Malek K. Optimization-based dynamic human walking prediction: One step formulation. Int J Numer Meth Eng. 2009;79(6):667-95.

  52. Nagano Y, Higashihara A, Edama M. Change in muscle thickness under contracting conditions following return to sports after a hamstring muscle strain injury: A pilot study. Asia Pacific J Sport Med. 2015;2(2):63-7.

  53. Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008;37(12):1101-9.

  54. Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sport Exer. 2001;33(5):783-90.

  55. Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Spor. 2003;13(4):244-50.

  56. Rathbone CR, Wenke JC, Warren GL, Armstrong RB. Importance of satellite cells in the strength recovery after eccentric contraction-induced muscle injury. Am J Physiol Regul Integr Comp Physiol. 2003;285(6):R1490-5.

  57. Butterfield TA, Herzog W. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage. J Appl Physiol. 2006;100(5): 1489-98.

  58. Chan O, Del Buono A, Best TM, Maffulli N. Acute muscle strain injuries: A proposed new classification system. Knee Surg Sports Traumatol Arthrosc. 2012;20(11): 2356-62.

  59. Koulouris G, Connell DA, Brukner P, Schneider-Kolsky M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sport Med. 2007;35(9):1500-6.