Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2019029498
pages 295-322

In Vitro Experimental Studies and Numerical Modeling to Investigate the Biomechanical Effects of Surgical Interventions on the Spine

Maria Luisa Ruspi
Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum–Università di Bologna, Bologna, Italy
Mohammadreza Chehrassan
First Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
Cesare Faldini
First Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
Luca Cristofolini
Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum–Università di Bologna, Bologna, Italy


This paper offers a comprehensive systematic review of biomechanical research on the spine and on in vitro and numerical methods of investigation. This review focuses on interventions on the ligaments, on the facets, and on the lamina (facetectomies, laminectomies, and laminoplasties). Surgical interventions on the facets and lamina in some cases yield dissatisfactory clinical follow-up. Patient outcome is strongly related to the effects that such interventions have on the biomechanical functionality of the spine. The papers examined include those addressing the untreated spine (range of motion and stiffness), but the focus is on experimental and numerical investigations studying the role of the ligaments and of the posterior structures (including their role in granting spine stability and the biomechanical behavior of each ligament). The papers were classified based on the different investigation approaches. In vitro experiments exploit dedicated biomechanical spine testers to measure the mechanical properties of physical specimens. Numerical modeling (multibody dynamics, finite-element analysis) allows predicting the effect of different conditions. All the papers indicate that interventions on the ligaments, facets, and lamina increase range of motion and decrease stability. The quantitative results show great variability across studies. This review shows how it is possible to use in vitro and numerical methods to investigate the biomechanical effects of surgical interventions.


  1. Yerby SA, Ehteshami JR, McLain RF. Loading of pedicle screws within the vertebrae. J Biomech. 1997;30:951-4.

  2. Nguyen NL, Kong CY, Hart RA. Proximal junctional ky-phosis and failure-diagnosis, prevention, and treatment. Curr Rev Musculoskeletal Med. 2016;9(3):299-308.

  3. Chen CS, Chen WJ, Cheng CK, Jao SH, Chueh SC, Wang CC. Failure analysis of broken pedicle screws on spinal instrumentation. Med Eng Phys. 2005;27(6):487-96.

  4. Prasad KN, Cole WC, Hasse GM. Health risks of low dose ionizing radiation in humans: a review. Exper Biol Med. 2004:378-82.

  5. Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogrammetry. Part I: theoretical background. Gait Posture. 2005;21(2):186-96.

  6. Karrholm J. Roentgen stereophotogrammetry: review of orthopedic applications. Acta Orthopaed Scand. 2009;60(4):491-503.

  7. Fong DT, Chan YY. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a sys-tematic review. Sensors. 2010;10(12):11556-65.

  8. Teyhen DS, Flynn TW, Bovik AC, Abraham LD. A new technique for digital fluoroscopic video assessment of sagittal plane lumbar spine motion. Spine. 2005;30: E406-4013.

  9. Papi E, Koh WS, McGregor AH. Wearable technology for spine movement assessment: a systematic review. J Bio mech. 2017;64:186-97.

  10. Pourahmadi MR, Takamjani IE, Jaberzadeh S, Sarrafzadeh J, Sanjari MA, Bagheri R, Taghipour M. Kinematics of the spine during sit-to-stand using motion analysis systems: a systematic review of literature. J Sport Rehabil. 2017;28:77-93.

  11. Sheng SR, Wang XY, Xu HZ, Zhu GQ, Zhou YF. Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J. 2010;19(1):46-56.

  12. O'Connell G, Vreesilovic EJ, Elliott DM. Comparison of animals used in disc research to human lumbar disc geometry. Spine. 2007;32:328-33.

  13. Cholewicki J, Crisco JJ, Oxland TR, Yamamoto I, Pan- jabi MM. Effects of posture and structure on three dimensional coupled rotations in the lumbar spine. Spine. 1996;21:2421-8.

  14. Danesi V, Zani L, Scheele A, Berra F, Cristofolini L. Re-producible reference frame for in vitro testing of the human vertebrae. J Biomech. 2014;47(1):313-8.

  15. Kettler A, Wilke HJ, Haid C, Claes L. Effects of specimen length on the monosegmental motion behavior of the lumbar spine. Spine. 2000;25:543-50.

  16. Busscher I, van Dieen JH, Kingma I, van der Veen AJ, Verkerke GJ, Veldhuizen AG. Biomechanical characteristics of different regions of the human spine. Spine. 2009;34:2858-64.

  17. Freddi A, Olmi G, Cristofolini L. Experimental stress analysis for materials and structures. Stress analysis models for developing design methodologies. New York: Springer; 2015. p. 187-212.

  18. Brandolini N, Cristofolini L, Viceconti M. Experimental methods for the biomechanical investigation of the human spine: a review. J Mech Med Biol. 2014;14(01):1430002.

  19. Sis HL, Mannenb EM, Wonga BM, Cadel ES, Bouxsein ML, Anderson DE, Friis EA. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. J Biomech. 2016;49:3252-9.

  20. Wilke HJ, Jungkunz B, Wenger K, Claes L. Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec. 1998;251:15-9.

  21. Cristofolini L, Brandolini N, Danesi V, Juszczyk MM, Erani P, Viceconti M. Strain distribution in the lumbar vertebrae under different loading configurations. Spine J. 2013;13(10):1281-92.

  22. Bay BK, Yerby SA, McLain RF, Toh E. Measurement of strain distributions within vertebral body sections by texture correlation. Spine. 1999;24:10-7.

  23. Palanca M, Brugo TM, Cristofolini L. Use of digital image correlation to investigate the biomechanics of the vertebra. J Mech Med Biol. 2015;15:1-10.

  24. Palanca M, Brodano Barbanti G, Cristofolini L. The size of simulated lytic metastases affects the strain distribution on the anterior surface of the vertebra. J Biomech Eng. 2018.

  25. Palanca M, Marco M, Ruspi ML, Cristofolini L. Full-field strain distribution in multi-vertebra spine segments: an in vitro application of digital image correlation. Med Eng Phys. 2017;8:1-8.

  26. Ruspi ML, Palanca M, Faldini C, Cristofolini L. Full-field in vitro investigation of hard and soft tissue strain in the spine by means of digital image correlation. MLTJ. 2017;7:538-45.

  27. Yoshimura T, Nakai K, Tamaoki G. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration. Indust Health. 2005;43:441-7.

  28. Shabana AA. Flexible multibody dynamics: review of past and recent developments. Multibody Sys Dyn. 1997;1:182-222.

  29. Abouhossein A, Weisse B, Ferguson SJ. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput Meth Biomech Biomed Eng. 2011;14(6):527-37.

  30. Lopik DW, Acar M. Development of a multi-body computational model of human head and neck. J Multi-body Dyn. 2007;221:175-96.

  31. Esat V, Acar M. Viscoelastic finite element analysis of the cervical intervertebral discs in conjunction with a multi-body dynamic model of the human head and neck. J Multi-body Dyn. 2009;223:249-62.

  32. Lopik DW, Acar M. Dynamic verification of a multi-body computational model of human head and neck for frontal, lateral, and rear impacts. J Multi-body Dyn. 2007;221:199-217.

  33. Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? J Biomech. 2014;47(14):3531-8.

  34. Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. J Eng Med. 2002;216.

  35. Teo EC, Ng HW. Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Med Eng Physics. 2001;23:155-64.

  36. Schileo E, Taddei F, Malandrino A, Cristofolini L, Vice-conti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982-9.

  37. Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. J Eng Med. 2010;224(7):801-12.

  38. Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Physics. 2008;30(10):1287-304.

  39. Dall'Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset P. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech. 2010;43(12):2374-80.

  40. Wilke HJ, Neef P, Hinz B, Seidel H, Claes L. Intradiscal pressure together with anthropometric data-a data set for the validation of models. Clin Biomech. 2001;1:S111-S26.

  41. Cristofolini L, Schileo E, Juszczyk M, Taddei F, Martelli S, Viceconti M. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos Trans R Soc. 2010;368:2725-63.

  42. Adams MA, Dolan P. Spine biomechanics. J Biomech. 2005;38(10):1972-83.

  43. White AA, Panjabi MM. The basic kinematics of the human spine. Spine. 1978;3:12-20.

  44. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load displacement curves. J Bone Joint Surg. 1994;76:413-24.

  45. Quint U, Wilke HJ, Shirazi-Adl A, Parnianpour M, Loer F, Claes LE. Importance of the intersegmental trunk muscles for the stability of the lumbar spine. Spine. 1998;23:1937-45.

  46. Wilcox RK. The biomechanics of vertebroplasty: a review. J Eng Med. 2004;218.

  47. Danesi V, Faldini C, Cristofolini L. Methods for the char-acterization of the long-term mechanical performance of cements for vertebroplasty and kyphoplasty: critical review and suggestions for the test methods. J Mech Med Biol. 2017;17:1-33.

  48. Newell N, Little JP, Christou A, Adams MA, Adam CJ, Masouros SD. Biomechanics of the human intervertebral disc: a review of testing techniques and results. J Mech Behav Biomed Mater. 2017;69:420-34.

  49. Oxland TR. Fundamental biomechanics of the spine-what we have learned in the past 25 years and future directions. J Biomech. 2016;49(6):817-32.

  50. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992;25:1351-6.

  51. Hukins DWL, Kirby MC, Sikoryn TA, Aspden RM, Cox AJ. Comparison of structure, mechanical properties, and functions of lumbar spinal ligaments. Spine. 1990;15:787-95.

  52. Dickey JP, Bednar DA, Dumas GA. New insight into the mechanism of the lumbar interspinous ligament. Spine. 1996;21:2720-7.

  53. Yoganandan N, Kumaresan S, Pintar FA. Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng. 2000;122:623-9.

  54. Grimes PF, Massie JB, Garfin SR. Anatomic and biomechanical analysis of the lower lumbar foraminal ligaments. Spine. 2000;25:2009-14.

  55. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine. Part II: Cervical spine soft tissue responses and biomechanical modeling. Clin Biomech. 2001;16:1-27.

  56. Li Y, Shen Z, Huang M, Wang X. Stepwise resection of the posterior ligamentous complex for stability of a thoracolumbar compression fracture: an in vitro biomechanical investigation. Medicine. 2017;96(35):e7873.

  57. Corse MR, Renberg WC, Friis EA. In vitro evaluation of biomechanical effects of multiple hemilaminectomies on the canine lumbar vertebral column. Am J Vet Res. 2003;64:1139-45.

  58. Hindle RJ, Pearcy MJ, Cross A. Mechanical function of the human lumbar interspinous and supraspinous ligaments. Sci Tech Rec. 1989;12:340-44.

  59. Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine. 2004;29:1208-16.

  60. Panjabi MM, Hausfeld JN, White AA. A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthopaed Scand. 1981;52(3):315-26.

  61. Panjabi MM, Pearson AM, Ito S, Ivancic PC, Gimenez SE, Tominaga Y. Cervical spine ligament injury during simulated frontal impact. Spine. 2004;29:2395-403.

  62. Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine. 2004;29:376-85.

  63. Ng HW, Teo EC, Lee KK, Qiu TX. Finite element analysis of cervical spinal instability under physiological loading. J Spinal Disord Tech. 2003;16:55-65.

  64. Guan Y, Yoganandan N, Zhang J, Pintar FA, Cuisk JF, Wolfla CE, Maiman DJ. Validation of a clinical finite element model of the human lumbosacral spine. Med Biol Eng Comput. 2006;44:633-41.

  65. Iorio JA, Jakoi AM, Singla A. Biomechanics of degenerative spinal disorders. Asian Spine J. 2016;10(2):377-84.

  66. Shah JS, Hampson WGJ, Jayson MIV The distribution of surface strain in the cadaveric lumbar spine. J Bone Joint Surg. 1978;60-B:246-51.

  67. Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. Spine. 1999;24:1197-202.

  68. Moisi M, Fisahn C, Tkachenko L, Tubbs RS, Ginat D, Grunert P, Jeyamohan S, Reintjes S, Ajayi O, Page J, Oskouian RJ, Hanscom D. Unilateral laminotomy with bilateral spinal canal decompression for lumbar stenosis: a technical note. Cureus. 2016;8(5):623.

  69. Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? Spine. 2008;33:2868-73.

  70. Quint U, Wilke HJ, Loer F, Claes L. Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization-a biomechanical study in vitro. Eur Spine J. 1998;7:229-38.

  71. Baisden J, Voo LM, Cusick JF, Pintar FA, Yoganandan N. Evaluation of cervical laminectomy and laminoplasty. Spine. 1999;24:1283-89.

  72. Kode S, Kallemeyn NA, Smucker JD, Fredericks DC, Grosland NM. The effect of multi-level laminoplasty and laminectomy on the biomechanics of the cervical spine: a finite element study. Iowa Orthopaed J. 2014;34:150-7.

  73. Tai CL, Hsieh PH, Chen WP, Chen LH, Chen WJ, Lai PL. Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomy for spinal stenosis syndrome-an experimental study in porcine model. BMC Musculoskeletal Disord. 2008;9:84.

  74. Lee MJ, Bransford RJ, Bellabarba C, Chapman JR, Cohen AM, Harrington RM, Ching RP. The effect of bilateral laminectomy versus laminectomy on the motion stiffness of the human lumbar spine. Spine. 2010;35:1789-93.

  75. Xie T, Qian J, Lu Y, Chen B, Jiang Y, Luo C. Biomechanical comparison of laminectomy, hemilaminectomy and a new minimally invasive approach in the surgical treatment of multilevel cervical intradural tumour: a finite element analysis. Eur Spine J. 2013;22(12):2719-30.

  76. Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC. An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine. 2002;27:E64-E70.

  77. Hong-Wan N, Ee-Chon T, Qing-Hang Z. Biomechanical effects of C2-C7 intersegmental stability due to lami-nectomy with unilateral and bilateral facetectomy. Spine. 2004;29(16):1737-45.

  78. Lee KK, Teo EC, Qiu TX, Yang K. Effect of facetectomy on lumbar spinal stability under sagittal plane loadings. Spine. 2004;29:1624-31.

  79. Teo EC, Lee KK, Qiu X, Ng HW, Yang K. The biomechanics of lumbar graded facetectomy under anterior-shear load. Biomed Eng. 2004;51.

  80. Zander T, Rohlmann A, Klockner C, Bergmann G. Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J. 2003;12(4):427-34.

  81. Bydon M, Macki M, Abt NB, Sciubba DM, Wolinsky JP, Witham TF, Gokaslan ZL, Bydon A. Clinical and surgical outcomes after lumbar laminectomy: an analysis of 500 patients. Surg Neurol Intern. 2015;6(Suppl 4): S190-3.

  82. Vaccaro AR, Moe RL, Hurlbert RJ, Lehman RA, Harrop JS. Surgical decision making for unstable thoracolumbar spine injuries: results of a consensus panel review by the Spine Trauma Study Group. J Spinal Disord Tech. 2006;19:1-10.

  83. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, Xu HZ. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2011;20(6):846-59.

  84. Cho W, Cho SK, Wu C. The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg. 2010;92-B:1061-5.

  85. Gaines RW. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg. 2000;82-A:1458-76.

Articles with similar content:

Mechanobiology of Bone and Mechanocoupling of Endosseous Titanium Oral Implants
Journal of Long-Term Effects of Medical Implants, Vol.15, 2005, issue 2
Kivanc Akca, Murat C. Cehreli
The Biomechanics of ACL Injury: Progresses toward Prophylactic Strategies
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 4-5
Chen-Hua Yeow, Luis Carlos Hernandez Barraza, Jin-Huat Low, Gokula Krishnan. R
Determinants, Limiting Factors, and Compensatory Strategies in Gait
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.13, 2001, issue 1
Sylvie Nadeau, Denis Gravel, Sandra Jean Olney
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 3
Hao Wang, Linmei Wu, Peng Liu, DeJu Zhu, Zuhua Zhang
Anterior Cruciate Ligament Research: Deriving Insights through a Bibliometric Analysis of Scholarship
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.31, 2019, issue 3
David C. Benton, Andrew D. Benton