Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volumes:
Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v23.i3-4.20
pages 221-306

Acoustic Emission and Nondestructive Evaluation of Biomaterials and Tissues

David H. Kohn
Department of Biologic and Materials Sciences, School of Dentistry, and Bioengineering Program, University of Michigan, Ann Arbor, Ml 48109-1078

RÉSUMÉ

Acoustic emission (AE) is an acoustic wave generated by the release of energy from localized sources in a material subjected to an externally applied stimulus. This technique may be used nondestructively to analyze tissues, materials, and biomaterial/tissue interfaces. Applications of AE include use as an early warning tool for detecting tissue and material defects and incipient failure, monitoring damage progression, predicting failure, characterizing failure mechanisms, and serving as a tool to aid in understanding material properties and structure-function relations. All these applications may be performed in real time.
This review discusses general principles of AE monitoring and the use of the technique in 3 areas of importance to biomedical engineering: (1) analysis of biomaterials, (2) analysis of tissues, and (3) analysis of tissue/biomaterial interfaces. Focus in these areas is on detection sensitivity, methods of signal analysis in both the time and frequency domains, the relationship between acoustic signals and microstructural phenomena, and the uses of the technique in establishing a relationship between signals and failure mechanisms.


Articles with similar content:

Analysis of Complex Systems Using Neural Networks
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Robert E. Uhrig
ANALYSIS OF COMPLEX SYSTEMS USING NEURAL NETWORKS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Robert E. Uhrig
Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B− Structuromics
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 3
Lenka Stefancikova, Marie Davidkova, Abin Biswas, Jan Sevcik, Michal Hofer, Anna Michaelidesova, Iva Falkova, Emilie Lukasova, Michael Hausmann, Alena Bacikova, Zdenek Kleibl, Alla Boreyko, Pavel Matula, Jana Vachelova, Stanislav Kozubek, Evgeny Krasavin, Martin Falk, Lucie Jezkova, Georg Hildenbrand
Acquisition Systems for Heat Transfer Measurement
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1983, issue
Richard J. De Witt
Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: PART A−Radiomics
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 3
Lenka Stefancikova, Marie Davidkova, Abin Biswas, Jan Sevcik, Michal Hofer, Anna Michaelidesova, Iva Falkova, Emilie Lukasova, Michael Hausmann, Alena Bacikova, Zdenek Kleibl, Alla Boreyko, Pavel Matula, Jana Vachelova, Stanislav Kozubek, Evgeny Krasavin, Martin Falk, Lucie Jezkova, Georg Hildenbrand