Abonnement à la biblothèque: Guest
Critical Reviews™ in Biomedical Engineering

Publication de 6  numéros par an

ISSN Imprimer: 0278-940X

ISSN En ligne: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

MECHANICS OF THE ARTERIAL WALL: REVIEW AND DIRECTIONS

Volume 23, Numéro 1-2, 1995, pp. 1-162
DOI: 10.1615/CritRevBiomedEng.v23.i1-2.10
Get accessGet access

RÉSUMÉ

The goals of this article are threefold: to briefly review the theory of finite elasticity and its application to arterial mechanics; to review what is known about the mechanical behavior of arteries in health and disease; and to review several clinically relevant aspects of arterial mechanics, as for example, aging, aneurysms, angioplasty, embolectomy, heat therapies, hypertension, trauma, and the disruption of atherosclerotic plaques. It is shown that, despite a huge literature on arterial mechanics, much remains unknown. In particular, a pressing need exists for detailed nonlinear three-dimensional constitutive relations for the passive and active arterial wall as a function of position along the arterial tree and disease. Arterial mechanics has, therefore, yet to reach its full potential as an important and consistent contributor to vascular medicine and surgery, but the possibilities remain great.

CITÉ PAR
  1. Matsumoto Takeo, Abe Hironobu, Ohashi Toshiro, Kato Yoko, Sato Masaaki, Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method, Physiological Measurement, 23, 4, 2002. Crossref

  2. Taber Larry A. , Humphrey Jay D. , Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity , Journal of Biomechanical Engineering, 123, 6, 2001. Crossref

  3. Liu S. Q., Moore M. M., Yap C., Prevention of Mechanical Stretch-Induced Endothelial and Smooth Muscle Cell Injury in Experimental Vein Grafts, Journal of Biomechanical Engineering, 122, 1, 2000. Crossref

  4. Latorre Marcos, Romero Xabier, Montáns Francisco J., The relevance of transverse deformation effects in modeling soft biological tissues, International Journal of Solids and Structures, 99, 2016. Crossref

  5. Lee Chung-Won, Huh Up, You Ji-Hun, Lee Chi-Seung, Kim Ki-Hoon, Song Chan-Hee, Wang Jei-Pil, Ryu Dong-Man, Computational Evaluation for Age-Dependent Material Nonlinear Behavior of Aortic Wall Tissue on Abdominal Aortic Aneurysms, Applied Sciences, 9, 1, 2018. Crossref

  6. Younis H. F., Kaazempur-Mofrad M. R., Chan R. C., Isasi A. G., Hinton D. P., Chau A. H., Kim L. A., Kamm R. D., Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation, Biomechanics and Modeling in Mechanobiology, 3, 1, 2004. Crossref

  7. Peña Juan A., Corral Victoria, Martínez Miguel A., Peña Estefanía, Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation, Journal of the Mechanical Behavior of Biomedical Materials, 77, 2018. Crossref

  8. Djeridi Rachid, Ould Ouali Mohand, Numerical Implementation and Finite Element Analysis of Anisotropic Hyperelastic Biomaterials - Influence of Fibers Orientation, Key Engineering Materials, 554-557, 2013. Crossref

  9. Kassab Ghassan S, Biomechanics of the cardiovascular system: the aorta as an illustratory example, Journal of The Royal Society Interface, 3, 11, 2006. Crossref

  10. Lu Xiaozhou, Sundara-Rajan Kishore, Lu Wenke, Mamishev Alexander V., Transfer Function of Interfacial Stress Sensor for Artificial Skin Applications, IEEE Transactions on Electron Devices, 60, 8, 2013. Crossref

  11. Holzapfel Gerhard A., Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls with Residual Stresses, in Biomechanics of Soft Tissue in Cardiovascular Systems, 2003. Crossref

  12. Atienza José M., Guinea Gustavo V., Rojo Francisco J., Burgos Raúl J., García-Montero Carlos, Goicolea Francisco J., Aragoncillo Paloma, Elicesa Manuel, The Influence of Pressure and Temperature on the Behavior of the Human Aorta and Carotid Arteries, Revista Española de Cardiología (English Edition), 60, 3, 2007. Crossref

  13. Bischoff Jeffrey E., Drexler Elizabeth S., Slifka Andrew J., McCowan Christopher N., Quantifying nonlinear anisotropic elastic material properties of biological tissue by use of membrane inflation, Computer Methods in Biomechanics and Biomedical Engineering, 12, 3, 2009. Crossref

  14. Dahl Shannon L. M., Vaughn Megann E., Hu Jin-Jia, Driessen Niels J. B., Baaijens Frank P. T., Humphrey Jay D., Niklason Laura E., A Microstructurally Motivated Model of the Mechanical Behavior of Tissue Engineered Blood Vessels, Annals of Biomedical Engineering, 36, 11, 2008. Crossref

  15. Fu Y.B., Rogerson G.A., Zhang Y.T., Initiation of aneurysms as a mechanical bifurcation phenomenon, International Journal of Non-Linear Mechanics, 47, 2, 2012. Crossref

  16. Schulze-Bauer Christian A. J., Regitnig Peter, Holzapfel Gerhard A., Mechanics of the human femoral adventitia including the high-pressure response, American Journal of Physiology-Heart and Circulatory Physiology, 282, 6, 2002. Crossref

  17. Zaman Gul, Islam S., Kang Yong Han, Jung Il Hyo, Blood flow of an Oldroyd-B fluid in a blood vessel incorporating a Brownian stress, Science China Physics, Mechanics and Astronomy, 55, 1, 2012. Crossref

  18. Humphrey J. D., Intracranial Saccular Aneurysms, in Biomechanics of Soft Tissue in Cardiovascular Systems, 2003. Crossref

  19. Seyed Vahedein Yashar, Liberson Alexander S, CardioFAN: open source platform for noninvasive assessment of pulse transit time and pulsatile flow in hyperelastic vascular networks, Biomechanics and Modeling in Mechanobiology, 18, 5, 2019. Crossref

  20. Humphrey Jay D., Vascular Disorders, in Cardiovascular Solid Mechanics, 2002. Crossref

  21. Kroon Martin, A numerical framework for material characterisation of inhomogeneous hyperelastic membranes by inverse analysis, Journal of Computational and Applied Mathematics, 234, 2, 2010. Crossref

  22. Ogden R. W., Nonlinear Elasticity, Anisotropy, Material Stability and Residual Stresses in Soft Tissue, in Biomechanics of Soft Tissue in Cardiovascular Systems, 2003. Crossref

  23. Bukka Meenasree, Rednam Poorna Jyothi, Sinha Mukty, Drug-eluting balloon: design, technology and clinical aspects, Biomedical Materials, 13, 3, 2018. Crossref

  24. Holzapfel Gerhard A., Gasser Thomas C., Ogden Ray W., A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models, in Cardiovascular Soft Tissue Mechanics, 2004. Crossref

  25. Hayashi Kozaburo, Mechanical Properties of Soft Tissues and Arterial Walls, in Biomechanics of Soft Tissue in Cardiovascular Systems, 2003. Crossref

  26. ZAMAN GUL, KANG YONG HAN, JUNG IL HYO, ORIENTATIONAL STRESS TENSOR OF POLYMER SOLUTION WITH APPLICATIONS TO BLOOD FLOW, Modern Physics Letters B, 25, 12n13, 2011. Crossref

  27. Horgan Cornelius O., Saccomandi Giuseppe, Constitutive Modelling of Rubber-Like and Biological Materials with Limiting Chain Extensibility, Mathematics and Mechanics of Solids, 7, 4, 2002. Crossref

  28. Hollander Yaniv, Durban David, Lu Xiao, Kassab Ghassan S., Lanir Yoram, Constitutive Modeling of Coronary Arterial Media—Comparison of Three Model Classes, Journal of Biomechanical Engineering, 133, 6, 2011. Crossref

  29. Wilber J. Patrick, Walton Jay R., The Convexity Properties of a Class of Constitutive Models for Biological Soft Issues, Mathematics and Mechanics of Solids, 7, 3, 2002. Crossref

  30. Čanić Sunčica, Muha Boris, Bukač Martina, Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation, in Fluid-Structure Interaction and Biomedical Applications, 2014. Crossref

  31. Davis N. Peter, Han Hai-Chao, Wayman Brian, Vito Raymond, Sustained Axial Loading Lengthens Arteries in Organ Culture, Annals of Biomedical Engineering, 33, 7, 2005. Crossref

  32. Wang Zhijie, Tian Lian, Chesler Naomi C., Pulmonary Vascular Mechanics in Pulmonary Hypertension, in Mechanobiology, 2016. Crossref

  33. Humphrey Jay D., Continuum Mechanics, in Cardiovascular Solid Mechanics, 2002. Crossref

  34. Taghizadeh Hadi, Tafazzoli-Shadpour Mohammad, Shadmehr Mohammad, Fatouraee Nasser, Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure, Materials, 8, 1, 2015. Crossref

  35. Humphrey Jay D., The Normal Arterial Wall, in Cardiovascular Solid Mechanics, 2002. Crossref

  36. Young Jonathan M., Yao Jiang, Ramasubramanian Ashok, Taber Larry A., Perucchio Renato, Automatic Generation of User Material Subroutines for Biomechanical Growth Analysis, Journal of Biomechanical Engineering, 132, 10, 2010. Crossref

  37. Narine Kishan, Ing Erik Claeys, Cornelissen Maria, Desomer Filip, Beele Hilde, Vanlangenhove Lieva, Smet Stefaan De, Nooten Guido Van, Readily available porcine aortic valve matrices for use in tissue valve engineering. Is cryopreservation an option?, Cryobiology, 53, 2, 2006. Crossref

  38. Ogden Ray W., Anisotropy and Nonlinear Elasticity in Arterial Wall Mechanics, in Biomechanical Modelling at the Molecular, Cellular and Tissue Levels, 508, 2009. Crossref

  39. Mousavi S. Jamaleddin, Avril Stéphane, Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory, Biomechanics and Modeling in Mechanobiology, 16, 5, 2017. Crossref

  40. Lanzer Peter, Strupp Gerhard, Schmidt Wolfram, Topoleski L. D. Timmie, The need for stent-lesion matching to optimize outcomes of intracoronary stent implantation, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101, 8, 2013. Crossref

  41. Guest Bruce, Arroyo Luis, Viel Laurent, Kerr Carolyn, Runciman John, EX VIVO EQUINE HEART AND LUNG PERFUSION SYSTEM, Biomedical Engineering: Applications, Basis and Communications, 27, 05, 2015. Crossref

  42. Samani Abbas, Zubovits Judit, Plewes Donald, Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples, Physics in Medicine and Biology, 52, 6, 2007. Crossref

  43. Topoleski L. D. Timmie, Stephen Beth, Biomechanical Behavior of Atherosclerotic Plaque, in PanVascular Medicine, 2015. Crossref

  44. Kleinstreuer Clement, Buchanan Jr. John, Lei Ming, Truskey George, Computational Analysis of Particle-Hemodynamics and Prediction of the Onset of Arterial Diseases, in Biomechanical Systems, 2000. Crossref

  45. Hayash Kozaburo, Stergiopulos Nikos, Meister Jean-Jacques, Greenwald Stephen, Rachev Alexander, Techniques in the Determination of the Mechanical Properties and Constitutive Laws of Arterial Walls, in Biomechanical Systems, 2000. Crossref

  46. Spofford Christina M., Chilian William M., The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle, American Journal of Physiology-Heart and Circulatory Physiology, 280, 3, 2001. Crossref

  47. Peña E., Calvo B., Martínez M. A., Doblaré M., On finite-strain damage of viscoelastic-fibred materials. Application to soft biological tissues, International Journal for Numerical Methods in Engineering, 74, 7, 2008. Crossref

  48. Abbasi Mostafa, Barakat Mohammed S., Dvir Danny, Azadani Ali N., A Non-Invasive Material Characterization Framework for Bioprosthetic Heart Valves, Annals of Biomedical Engineering, 47, 1, 2019. Crossref

  49. Martufi G., Gasser T. C., Appoo J. J., Di Martino E. S., Mechano-biology in the thoracic aortic aneurysm: a review and case study, Biomechanics and Modeling in Mechanobiology, 13, 5, 2014. Crossref

  50. Gao Feng, Guo Zhihong, Sakamoto Makoto, Matsuzawa Teruo, Fluid-structure Interaction within a Layered Aortic Arch Model, Journal of Biological Physics, 32, 5, 2007. Crossref

  51. Holzapfel Gerhard A. , Gasser Thomas C. , Ogden Ray W. , Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability , Journal of Biomechanical Engineering, 126, 2, 2004. Crossref

  52. Sorrentino Sajoscha, Haller Hermann, Tissue Engineering of Blood Vessels: How to Make a Graft, in Tissue Engineering, 2011. Crossref

  53. Macrae R. A., Miller K., Doyle B. J., Methods in Mechanical Testing of Arterial Tissue: A Review, Strain, 52, 5, 2016. Crossref

  54. Bukac Martina, Yotov Ivan, Zakerzadeh Rana, Zunino Paolo, Effects of Poroelasticity on Fluid-Structure Interaction in Arteries: a Computational Sensitivity Study, in Modeling the Heart and the Circulatory System, 14, 2015. Crossref

  55. Topoleski L. D. Timmie, Stephen Beth, Biomechanical Behavior of Atherosclerotic Plaque, in PanVascular Medicine, 2014. Crossref

  56. SHAH A. D., HARRIS J. L., KYRlACOU S. K., HUMPHREY J. D., Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms, Computer Methods in Biomechanics and Biomedical Engineering, 1, 2, 1997. Crossref

  57. Lorenzini Giulio, Conti Alessandra, Numerical transient state analysis of partly obstructed haemodynamics using FSI approach, Open Engineering, 3, 2, 2013. Crossref

  58. Genovese Katia, Pappalettere Carmine, Whole 3D shape reconstruction of vascular segments under pressure via fringe projection techniques, Optics and Lasers in Engineering, 44, 12, 2006. Crossref

  59. Sokolis Dimitrios P., A passive strain-energy function for elastic and muscular arteries: correlation of material parameters with histological data, Medical & Biological Engineering & Computing, 48, 6, 2010. Crossref

  60. Younis Hesham F., Chung Chanil I., Kamm Roger D., Challenges in developing an accurate model for carotid bifurcation blood flow and wall mechanics, in Computational Fluid and Solid Mechanics, 2001. Crossref

  61. Bellini C., Ferruzzi J., Roccabianca S., Di Martino E. S., Humphrey J. D., A Microstructurally Motivated Model of Arterial Wall Mechanics with Mechanobiological Implications, Annals of Biomedical Engineering, 42, 3, 2014. Crossref

  62. Khalil Ahmad S., Bouma Brett E., Kaazempur Mofrad Mohammad R., A Combined FEM/Genetic Algorithm for Vascular Soft tissue Elasticity Estimation, Cardiovascular Engineering, 6, 3, 2006. Crossref

  63. Gasser T. Christian, Bringing Vascular Biomechanics into Clinical Practice. Simulation-Based Decisions for Elective Abdominal Aortic Aneurysms Repair, in Patient-Specific Computational Modeling, 5, 2012. Crossref

  64. Calvo Begoña, Peña Estefanía, Fundamental Aspects in Modelling the Constitutive Behaviour of Fibered Soft Tissues, in Advances in Numerical Simulation in Physics and Engineering, 3, 2014. Crossref

  65. Zhang Yanhang, Dunn Martin L., Drexler E. S., McCowan C. N., Slifka A. J., Ivy D. D., Shandas Robin, A Microstructural Hyperelastic Model of Pulmonary Arteries Under Normo- and Hypertensive Conditions, Annals of Biomedical Engineering, 33, 8, 2005. Crossref

  66. García-Herrera Claudio M., Celentano Diego J., Cruchaga Marcela A., Guinea Gustavo V., Mechanical Characterization of the Human Aorta: Experiments, Modeling and Simulation, in Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials, 49, 2016. Crossref

  67. Pontrelli G., A mathematical model of flow in a liquid-filled visco-elastic tube, Medical & Biological Engineering & Computing, 40, 5, 2002. Crossref

  68. Hurtado J, Govindarajan S, Anisotropic hyperelastic models in Abaqus, in Constitutive Models for Rubber VI, 2009. Crossref

  69. Ambrosi D., Guillou A., Di Martino E. S., Stress-modulated remodeling of a non-homogeneous body, Biomechanics and Modeling in Mechanobiology, 7, 1, 2008. Crossref

  70. Hunter Kendall S., Lammers Steven R., Shandas Robin, Pulmonary Vascular Stiffness: Measurement, Modeling, and Implications in Normal and Hypertensive Pulmonary Circulations, in Comprehensive Physiology, 2011. Crossref

  71. Mahapatra Deepak, Bhowmick Shubhankar, Sanyal Shubhashis, A Systematic Survey of the Realm of Biomechanics, in Design, Development, and Optimization of Bio-Mechatronic Engineering Products, 2019. Crossref

  72. Morin Claire, Avril Stéphane, Hellmich Christian, The fiber reorientation problem revisited in the context of Eshelbian micromechanics: theory and computations, PAMM, 15, 1, 2015. Crossref

  73. Zou Yu, Zhang Yanhang, An Experimental and Theoretical Study on the Anisotropy of Elastin Network, Annals of Biomedical Engineering, 37, 8, 2009. Crossref

  74. Abbasi Mostafa, Barakat Mohammed S., Vahidkhah Koohyar, Azadani Ali N., Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis, Journal of the Mechanical Behavior of Biomedical Materials, 62, 2016. Crossref

  75. Federico Salvatore, Grillo Alfio, Giaquinta Gaetano, Herzog Walter, Convex Fung-type potentials for biological tissues, Meccanica, 43, 3, 2008. Crossref

  76. Matthews Peter B., Azadani Ali N., Jhun Choon-Sik, Ge Liang, Guy T. Sloane, Guccione Julius M., Tseng Elaine E., Comparison of Porcine Pulmonary and Aortic Root Material Properties, The Annals of Thoracic Surgery, 89, 6, 2010. Crossref

  77. Bukač Martina, Yotov Ivan, Zunino Paolo, An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure, Numerical Methods for Partial Differential Equations, 31, 4, 2015. Crossref

  78. Martufi Giampaolo, Gasser T. Christian, A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta, Journal of Biomechanics, 44, 14, 2011. Crossref

  79. CHAUDHRY HANS R., LOTT DAWN A., PRESTIGIACOMO CHARLES J., FINDLEY THOMAS W., MATHEMATICAL MODEL FOR THE RUPTURE OF CEREBRAL SACCULAR ANEURYSMS THROUGH THREE-DIMENSIONAL STRESS DISTRIBUTION IN THE ANEURYSM WALL, Journal of Mechanics in Medicine and Biology, 06, 03, 2006. Crossref

  80. Chagnon G., Rebouah M., Favier D., Hyperelastic Energy Densities for Soft Biological Tissues: A Review, Journal of Elasticity, 120, 2, 2015. Crossref

  81. Chen Huan, Liu Yi, Zhao Xuefeng, Lanir Yoram, Kassab Ghassan S., A micromechanics finite-strain constitutive model of fibrous tissue, Journal of the Mechanics and Physics of Solids, 59, 9, 2011. Crossref

  82. Guzelsu Nejat, Federici John F., Lim Hee C., Chauhdry Hans R., Ritter Art B., Findley Tom, Measurement of skin stretch via light reflection, Journal of Biomedical Optics, 8, 1, 2003. Crossref

  83. Miyazaki H., Hayashi K., Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries, Medical & Biological Engineering & Computing, 37, 4, 1999. Crossref

  84. Federico Salvatore, Grillo Alfio, Imatani Shoji, Giaquinta Gaetano, Herzog Walter, An energetic approach to the analysis of anisotropic hyperelastic materials, International Journal of Engineering Science, 46, 2, 2008. Crossref

  85. Alam Manjurul, Seshaiyer Padmanabhan, Impact of Contact Constraints on the Dynamics of Idealized Intracranial Saccular Aneurysms, Bioengineering, 6, 3, 2019. Crossref

  86. Cheng Jeffrey K., Wagenseil Jessica E., Extracellular matrix and the mechanics of large artery development, Biomechanics and Modeling in Mechanobiology, 11, 8, 2012. Crossref

  87. Williamson, S. D. , Lam, Y. , Younis, H. F. , Huang, H. , Patel, S. , Kaazempur-Mofrad, and M. R. , Kamm R. D. , On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties , Journal of Biomechanical Engineering, 125, 1, 2003. Crossref

  88. Saez P., On the Theories and Numerics of Continuum Models for Adaptation Processes in Biological Tissues, Archives of Computational Methods in Engineering, 23, 2, 2016. Crossref

  89. Peña E., Peña J.A., Doblaré M., On modelling nonlinear viscoelastic effects in ligaments, Journal of Biomechanics, 41, 12, 2008. Crossref

  90. Volokh K.Y., Prediction of arterial failure based on a microstructural bi-layer fiber–matrix model with softening, Journal of Biomechanics, 41, 2, 2008. Crossref

  91. Calvo B., Peña E., Martinez M. A., Doblaré M., An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects, International Journal for Numerical Methods in Engineering, 69, 10, 2007. Crossref

  92. Hollander Yaniv, Durban David, Lu Xiao, Kassab Ghassan S., Lanir Yoram, Structure-Based Constitutive Model of Coronary Media, in Structure-Based Mechanics of Tissues and Organs, 2016. Crossref

  93. HOLZAPFEL GERHARD A., Biomechanics of Soft Tissue, in Handbook of Materials Behavior Models, 2001. Crossref

  94. Saravanan U., On large elastic deformation of prestressed right circular annular cylinders, International Journal of Non-Linear Mechanics, 46, 1, 2011. Crossref

  95. Chen Kinon, Fata Bahar, Einstein Daniel R., Characterization of the Highly Nonlinear and Anisotropic Vascular Tissues from Experimental Inflation Data: A Validation Study Toward the Use of Clinical Data for In-Vivo Modeling and Analysis, Annals of Biomedical Engineering, 36, 10, 2008. Crossref

  96. Chen Huan, Zhao Xuefeng, Lu Xiao, Kassab Ghassan S., Microstructure-Based Constitutive Models for Coronary Artery Adventitia, in Structure-Based Mechanics of Tissues and Organs, 2016. Crossref

  97. Marra Steven P., Kennedy Francis E., Kinkaid Jeffrey N., Fillinger Mark F., Elastic and Rupture Properties of Porcine Aortic Tissue Measured Using Inflation Testing, Cardiovascular Engineering, 6, 4, 2006. Crossref

  98. Oie Tomonori, Murayama Yoshinobu, Fukuda Toru, Nagai Chiharu, Omata Sadao, Kanda Keiichi, Yaku Hitoshi, Nakayama Yasuhide, Local elasticity imaging of vascular tissues using a tactile mapping system, Journal of Artificial Organs, 12, 1, 2009. Crossref

  99. García-Herrera Claudio M., Celentano Diego J., Cruchaga Marcela A., Rojo Francisco J., Atienza José Miguel, Guinea Gustavo V., Goicolea José M., Mechanical characterisation of the human thoracic descending aorta: experiments and modelling, Computer Methods in Biomechanics and Biomedical Engineering, 15, 2, 2012. Crossref

  100. Gundiah Namrata, B Ratcliffe Mark, A Pruitt Lisa, Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests, Journal of Biomechanics, 40, 3, 2007. Crossref

  101. Chagnon Grégory, Ohayon Jacques, Martiel Jean-Louis, Favier Denis, Hyperelasticity Modeling for Incompressible Passive Biological Tissues, in Biomechanics of Living Organs, 2017. Crossref

  102. Niklason Laura E., Abbott William, Gao Jinming, Klagges Brian, Hirschi Karen K., Ulubayram Kezban, Conroy Nancy, Jones Rosemary, Vasanawala Ami, Sanzgiri Seema, Langer Robert, Morphologic and mechanical characteristics of engineered bovine arteries, Journal of Vascular Surgery, 33, 3, 2001. Crossref

  103. Topoleski Tim, Atherosclerotic Lesions: Mechanical Properties, in Pan Vascular Medicine, 2002. Crossref

  104. Peña Estefanía, García Alberto, Sáez Pablo, Peña Juan A., Cilla Myriam, Martínez Miguel Angel, Mechanical and Microstructural Behavior of Vascular Tissue, in Advances in Biomechanics and Tissue Regeneration, 2019. Crossref

  105. Peña E., Calvo B., Martínez M.A., Doblaré M., An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects, International Journal of Solids and Structures, 44, 3-4, 2007. Crossref

  106. Wan Jinjin, He Fangli, Zhao Yongfeng, Zhang Hongmei, Zhou Xiaodong, Wan Mingxi, Non-invasive Vascular Radial/Circumferential Strain Imaging and Wall Shear Rate Estimation Using Video Images of Diagnostic Ultrasound, Ultrasound in Medicine & Biology, 40, 3, 2014. Crossref

  107. Goenezen Sevan, Barbone Paul, Oberai Assad A., Solution of the nonlinear elasticity imaging inverse problem: The incompressible case, Computer Methods in Applied Mechanics and Engineering, 200, 13-16, 2011. Crossref

  108. Martufi Giampaolo, Gasser T. Christian, Histo-Mechanical Modeling of the Wall of Abdominal Aorta Aneurysms, IFAC Proceedings Volumes, 45, 2, 2012. Crossref

  109. Peña Estefania, Calvo B., Martínez M. A., Martins P., Mascarenhas T., Jorge R. M. N., Ferreira A., Doblaré M., Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue, Biomechanics and Modeling in Mechanobiology, 9, 1, 2010. Crossref

  110. Ogden Ray W., Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological Tissues with a Focus on Artery Walls, in Biomechanics: Trends in Modeling and Simulation, 20, 2017. Crossref

  111. Rodríguez Javier, Goicolea José Ma, García Juan C., Gabaldón Felipe, Finite Element Models for Mechanical Simulation of Coronary Arteries, in Functional Imaging and Modeling of the Heart, 2674, 2003. Crossref

  112. Sacco Riccardo, Guidoboni Giovanna, Mauri Aurelio Giancarlo, Constitutive Relations for Solids, in A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences, 2019. Crossref

  113. Mousavi S. Jamaleddin, Farzaneh Solmaz, Avril Stéphane, Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model, Biomechanics and Modeling in Mechanobiology, 18, 6, 2019. Crossref

  114. Haskett Darren, Doyle Jefferson J., Gard Connie, Chen Hwudaurw, Ball Corbie, Estabrook Mark A., Encinas Alejandra C., Dietz Harry C., Utzinger Urs, Vande Geest Jonathan P., Azhar Mohamad, Altered tissue behavior of a non-aneurysmal descending thoracic aorta in the mouse model of Marfan syndrome, Cell and Tissue Research, 347, 1, 2012. Crossref

  115. Bibliography, in A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences, 2019. Crossref

  116. Gundiah Namrata, Kam Kimberly, Matthews Peter B., Guccione Julius, Dwyer Harry A., Saloner David, Chuter Timothy A.M., Guy T. Sloane, Ratcliffe Mark B., Tseng Elaine E., Asymmetric Mechanical Properties of Porcine Aortic Sinuses, The Annals of Thoracic Surgery, 85, 5, 2008. Crossref

  117. Morin Claire, Krasny Witold, Avril Stéphane, Multiscale Mechanical Behavior of Large Arteries, in Encyclopedia of Biomedical Engineering, 2019. Crossref

  118. Bell E. David, Sullivan Jacob W., Monson Kenneth L., Subfailure Overstretch Induces Persistent Changes in the Passive Mechanical Response of Cerebral Arteries, Frontiers in Bioengineering and Biotechnology, 3, 2015. Crossref

  119. Sokolis Dimitrios P., Sassani Sofia, Kritharis Eleftherios P., Tsangaris Sokrates, Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy, Medical & Biological Engineering & Computing, 49, 8, 2011. Crossref

  120. Atienza José M., Guinea Gustavo V., Rojo Francisco J., Burgos Raúl J., García-Montero Carlos, Goicolea Francisco J., Aragoncillo Paloma, Elices Manuel, Influencia de la presión y la temperatura en el comportamiento de la aorta y las carótidas humanas, Revista Española de Cardiología, 60, 3, 2007. Crossref

  121. Kalita Piotr, Schaefer Robert, Mechanical Models of Artery Walls, Archives of Computational Methods in Engineering, 15, 1, 2008. Crossref

  122. Kim Jungsil, Wagenseil Jessica E., Bio-Chemo-Mechanical Models of Vascular Mechanics, Annals of Biomedical Engineering, 43, 7, 2015. Crossref

  123. Sunbuloglu Emin, Bozdag Ergun, Toprak Tuncer, Islak Civan, Experimental Parameter Estimation Method for Nonlinear Viscoelastic Composite Material Models: An Application on Arterial Tissue, Computer Methods in Biomechanics and Biomedical Engineering, 16, 12, 2013. Crossref

  124. Humphrey J. D., An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics, Journal of Biomechanical Engineering, 121, 2, 1999. Crossref

  125. Carboni Mosé, Desch Georg W., Weizsäcker Hans W., Passive mechanical properties of porcine left circumflex artery and its mathematical description, Medical Engineering & Physics, 29, 1, 2007. Crossref

  126. Čanić Sunčica, Tambača Josip, Guidoboni Giovanna, Mikelić Andro, Hartley Craig J., Rosenstrauch Doreen, Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow, SIAM Journal on Applied Mathematics, 67, 1, 2006. Crossref

  127. Rosario Daniel E., Brigham John C., Aquino Wilkins, Identification of material properties of orthotropic elastic cylinders immersed in fluid using vibroacoustic techniques, Ultrasonics, 48, 6-7, 2008. Crossref

  128. Horný Lukáš, Netušil Marek, Daniel Matěj, Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta, Journal of the Mechanical Behavior of Biomedical Materials, 38, 2014. Crossref

  129. Rodriguez Miguel A., Augustin Christoph M., Shadden Shawn C., FEniCS mechanics: A package for continuum mechanics simulations, SoftwareX, 9, 2019. Crossref

  130. Humphrey J. D., Towards a Theory of Vascular Growth and Remodeling, in Mechanics of Biological Tissue, 2006. Crossref

  131. Doblaré M., García-Aznar J. M., Gómez-Benito M. J., A Mechanobiological Formulation of Bone Healing, in Mechanics of Biological Tissue, 2006. Crossref

  132. Hoskins Peter R., Physical Properties of Tissues Relevant to Arterial Ultrasound Imaging and Blood Velocity Measurement, Ultrasound in Medicine & Biology, 33, 10, 2007. Crossref

  133. Kvistedal Y. A., Nielsen P. M. F., Estimating material parameters of human skin in vivo, Biomechanics and Modeling in Mechanobiology, 8, 1, 2009. Crossref

  134. Peña E., Martínez M.A., Calvo B., Doblaré M., Application of the natural element method to finite deformation inelastic problems in isotropic and fiber-reinforced biological soft tissues, Computer Methods in Applied Mechanics and Engineering, 197, 21-24, 2008. Crossref

  135. Duong Minh Tuan, Nguyen Nhu Huynh, Staat Manfred, Physical response of hyperelastic models for composite materials and soft tissues, Asia Pacific Journal on Computational Engineering, 2, 1, 2015. Crossref

  136. Muller-Delp Judy, Spier Scott A., Ramsey Michael W., Lesniewski Lisa A., Papadopoulos Anthony, Humphrey J. D., Delp Michael D., Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles, American Journal of Physiology-Heart and Circulatory Physiology, 282, 5, 2002. Crossref

  137. Dhume Rohit Y., Barocas Victor H., Fiber-Network Modeling in Biomechanics: Theoretical and Analytical Approaches, in Biomechanics: Trends in Modeling and Simulation, 20, 2017. Crossref

  138. Monson Kenneth L., Converse Matthew I., Manley Geoffrey T., Cerebral blood vessel damage in traumatic brain injury, Clinical Biomechanics, 64, 2019. Crossref

  139. HUMPHREY J. D., Computer Methods in Membrane Biomechanics, Computer Methods in Biomechanics and Biomedical Engineering, 1, 3, 1998. Crossref

  140. Taghizadeh Hadi, Shadpour Mohammad Tafazzoli, Structurally Motivated Models of the Arterial Wall Tissue, Journal of Multiscale Modelling, 05, 04, 2013. Crossref

  141. Liu Rui Han, Ong Chin Siang, Fukunishi Takuma, Ong Kingsfield, Hibino Narutoshi, Review of Vascular Graft Studies in Large Animal Models, Tissue Engineering Part B: Reviews, 24, 2, 2018. Crossref

  142. Doblaré M., García-Aznar J. M., On numerical modelling of growth, differentiation and damage in structural living tissues, Archives of Computational Methods in Engineering, 13, 4, 2006. Crossref

  143. Wilstein Zahava, Alligood Daniel M., McLure Valerie L., Miller Austinn C., Mathematical model of hypertension-induced arterial remodeling: A chemo-mechanical approach, Mathematical Biosciences, 303, 2018. Crossref

  144. Huh Up, Lee Chung-Won, You Ji-Hun, Song Chan-Hee, Lee Chi-Seung, Ryu Dong-Man, Determination of the Material Parameters in the Holzapfel-Gasser-Ogden Constitutive Model for Simulation of Age-Dependent Material Nonlinear Behavior for Aortic Wall Tissue under Uniaxial Tension, Applied Sciences, 9, 14, 2019. Crossref

  145. Merodio J., On constitutive equations for fiber-reinforced nonlinearly viscoelastic solids, Mechanics Research Communications, 33, 6, 2006. Crossref

  146. Rosales Misael, Radeva Petia, Rodriguez-Leor Oriol, Gil Debora, Modelling of image-catheter motion for 3-D IVUS, Medical Image Analysis, 13, 1, 2009. Crossref

  147. Szekeres M., Kaley G, Nádasy GL, Dézsi L., Nitric oxide modulates the interaction of pressure-induced wall mechanics and myogenic response of rat intramural coronary arterioles, Acta Physiologica Hungarica, 93, 1, 2006. Crossref

  148. Khanafer Khalil, Ghosh Abhijit, Vafai Kambiz, Correlation between MMP and TIMP levels and elastic moduli of ascending thoracic aortic aneurysms, Cardiovascular Revascularization Medicine, 20, 4, 2019. Crossref

  149. Abramowitch Steven D., Feola Andrew, Jallah Zegbeh, Moalli Pamela A., Tissue mechanics, animal models, and pelvic organ prolapse: A review, European Journal of Obstetrics & Gynecology and Reproductive Biology, 144, 2009. Crossref

  150. O'Hagan Joseph J, Samani Abbas, Measurement of the hyperelastic properties of tissue slices with tumour inclusion, Physics in Medicine and Biology, 53, 24, 2008. Crossref

  151. Choi Jae-Woo, Choi Deok-Kee, A Study on Effect of Residual Stress on Stress Distribution of Arterial Walls Under High Blood Pressure, Transactions of the Korean Society of Mechanical Engineers B, 35, 11, 2011. Crossref

  152. Lu Tongqing, Chen Zhiqiang, Qi H. Jerry, Wang T.J., A micro-structure based constitutive model for anisotropic stress–strain behaviors of artery tissues, International Journal of Solids and Structures, 139-140, 2018. Crossref

  153. Merodio J., Rajagopal K. R., On Constitutive Equations For Anisotropic Nonlinearly Viscoelastic Solids, Mathematics and Mechanics of Solids, 12, 2, 2007. Crossref

  154. Slifka A.J., Drexler E.S., Wright J.E., Shandas R., Bubble-test method for synthetic and bovine vascular material, Journal of Biomechanics, 39, 10, 2006. Crossref

  155. Goulette François, Chen Zhuo-Wei, Fast computation of soft tissue deformations in real-time simulation with Hyper-Elastic Mass Links, Computer Methods in Applied Mechanics and Engineering, 295, 2015. Crossref

  156. Watton P. N., Hill N. A., Heil M., A mathematical model for the growth of the abdominal aortic aneurysm, Biomechanics and Modeling in Mechanobiology, 3, 2, 2004. Crossref

  157. Blondel W.C.P.M., Didelon J., Maurice G., Carteaux J.-P., Xiong Wang , Stolz J.-F., Investigation of 3-D mechanical properties of blood vessels using a new in vitro tests system: results on sheep common carotid arteries, IEEE Transactions on Biomedical Engineering, 48, 4, 2001. Crossref

  158. Pontrelli Giuseppe, A Multiscale Approach for Modelling Wave Propagation in an Arterial Segment, Computer Methods in Biomechanics and Biomedical Engineering, 7, 2, 2004. Crossref

  159. Kyriacou S.K., Davatzikos C., Zinreich S.J., Bryan R.N., Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model [MRI], IEEE Transactions on Medical Imaging, 18, 7, 1999. Crossref

  160. Shah A.D., Humphrey J.D., Finite strain elastodynamics of intracranial saccular aneurysms, Journal of Biomechanics, 32, 6, 1999. Crossref

  161. Pontrelli Giuseppe, Rossoni Enrico, Numerical modelling of the pressure wave propagation in the arterial flow, International Journal for Numerical Methods in Fluids, 43, 6-7, 2003. Crossref

  162. Kia O.E., Sirohey S.A., Vossoughi J., Image-based evaluation of vascular residual strain, Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No.PR00446), 1999. Crossref

  163. Holzapfel G.A., Gasser T.C., Stadler M., A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis, European Journal of Mechanics - A/Solids, 21, 3, 2002. Crossref

  164. Van Dyke Timothy J., Hoger Anne, A comparison of second-order constitutive theories for hyperelastic materials, International Journal of Solids and Structures, 37, 41, 2000. Crossref

  165. Lubarda V.A., Hoger A., On the mechanics of solids with a growing mass, International Journal of Solids and Structures, 39, 18, 2002. Crossref

  166. Liao D., Yang J., Zhao J., Zeng Y., Vinter-Jensen L., Gregersen H., The effect of epidermal growth factor on the incremental Young’s moduli in the rat small intestine, Medical Engineering & Physics, 25, 5, 2003. Crossref

  167. Rachev A, Greenwald S.E, Residual strains in conduit arteries, Journal of Biomechanics, 36, 5, 2003. Crossref

  168. Walton Jay R., Wilber J.Patrick, Sufficient conditions for strong ellipticity for a class of anisotropic materials, International Journal of Non-Linear Mechanics, 38, 4, 2003. Crossref

  169. Tolba Emad, Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds, Regenerative Engineering and Translational Medicine, 6, 4, 2020. Crossref

  170. Blondel W.C.P.M., Didelon J., Carteaux J.P., Wang X., Stoltz J.F., Evaluation of a novel instrumental set-up to measure static and dynamic mechanical properties of segments of blood vessels in vitro-preliminary results, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. No.99CH37015), 2, 1999. Crossref

  171. Ravi Swathi, Chaikof Elliot L, Biomaterials for vascular tissue engineering, Regenerative Medicine, 5, 1, 2010. Crossref

  172. Pillalamarri N.R., Patnaik S.S., Piskin S., Gueldner P., Finol E.A., Ex Vivo Regional Mechanical Characterization of Porcine Pulmonary Arteries, Experimental Mechanics, 61, 1, 2021. Crossref

  173. Converse Matthew I., Nye Kevin S., Dahl Mar Janna, Albertine Kurt H., Monson Kenneth L., Stretch-Induced Intimal Failure in Isolated Cerebral Arteries as a Function of Development, Annals of Biomedical Engineering, 49, 12, 2021. Crossref

  174. Converse Matthew I., Monson Kenneth L., Biaxial softening of isolated cerebral arteries following axial overstretch, Journal of the Mechanical Behavior of Biomedical Materials, 118, 2021. Crossref

  175. Tian Lian, Chester Naomi C., In Vivo and in Vitro Measurements of Pulmonary Arterial Stiffness: A Brief Review, Pulmonary Circulation, 2, 4, 2012. Crossref

  176. Frazão Laura. P., Fernandes Ana M., Oliveira Catarina, Martins Albino, Silva Tiago H., Vieira de Castro Joana, Nogueira-Silva Cristina, Neves Nuno M., New Vascular Graft Using the Decellularized Human Chorion Membrane, ACS Biomaterials Science & Engineering, 7, 7, 2021. Crossref

  177. Ravi Swathi, Qu Zheng, Chaikof Elliot L., Polymeric Materials for Tissue Engineering of Arterial Substitutes, Vascular, 17, 1_suppl, 2009. Crossref

  178. Berger S. A., Jou L-D., Flows in Stenotic Vessels, Annual Review of Fluid Mechanics, 32, 1, 2000. Crossref

  179. Sáez P., García A., Peña E., Gasser T.C., Martínez M.A., Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery, Acta Biomaterialia, 33, 2016. Crossref

  180. Bracamonte Johane H., Saunders Sarah K., Wilson John S., Truong Uyen T., Soares Joao S., Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications, Applied Sciences, 12, 8, 2022. Crossref

  181. Guo Qingyi, Chen Jinlong, Liu Haofei, Sun Cuiru, Measurement of Layer-Specific Mechanical Properties of Intact Blood Vessels Based on Intravascular Optical Coherence Tomography, Cardiovascular Engineering and Technology, 2022. Crossref

  182. Gasser Thomas C., Schulze-Bauer Christian A. J., Holzapfel Gerhard A., A Three-dimensional Finite Element Model for Arterial Clamping , Journal of Biomechanical Engineering, 124, 4, 2002. Crossref

  183. Roeder Blayne A., Babbs Charles F., Schoenlein William E., Kokini Klod, Sadeghi Farshid , Self-sealing, Large Bore Arterial Punctures: A Counterintuitive New Phenomenon, Journal of Biomechanical Engineering, 124, 4, 2002. Crossref

  184. Athaide Chloe E., Spronck Bart, Au Jason S., Physiological basis for longitudinal motion of the arterial wall, American Journal of Physiology-Heart and Circulatory Physiology, 322, 5, 2022. Crossref

  185. Tian Lian, Wang Zhijie, Liu Yuming, Eickhoff Jens C., Eliceiri Kevin W., Chesler Naomi C., Validation of an arterial constitutive model accounting for collagen content and crosslinking, Acta Biomaterialia, 31, 2016. Crossref

  186. Bhat Subraya Krishna, Yamada Hiroshi, Mechanical characterization of dissected and dilated human ascending aorta using Fung-type hyperelastic models with pre-identified initial tangent moduli for low-stress distensibility, Journal of the Mechanical Behavior of Biomedical Materials, 125, 2022. Crossref

  187. Harb Nizar, Labed Nadia, Domaszewski Matthieu, Peyraut Francois, On the unicity of a solution in biomechanics of soft tissues: A numerical approach, 2019 Advances in Science and Engineering Technology International Conferences (ASET), 2019. Crossref

  188. Hong Mun K., Vossoughi Jafar, Mintz Gary S., Kauffman Richard D., Hoyt Robert F., Cornhill J. Fredrick, Herderick Edward E., Leon Martin B., Hoeg Jeffrey M., Altered Compliance and Residual Strain Precede Angiographically Detectable Early Atherosclerosis in Low-Density Lipoprotein Receptor Deficiency, Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 10, 1997. Crossref

  189. Gonçalves Raquel C., Banfi Andrea, Oliveira Mariana B., Mano João F., Strategies for re-vascularization and promotion of angiogenesis in trauma and disease, Biomaterials, 269, 2021. Crossref

  190. Zhang Will, Sommer Gerhard, Niestrawska Justyna A., Holzapfel Gerhard A., Nordsletten David, The effects of viscoelasticity on residual strain in aortic soft tissues, Acta Biomaterialia, 140, 2022. Crossref

  191. Giannokostas K., Dimakopoulos Y., Tsamopoulos J., Shear stress and intravascular pressure effects on vascular dynamics: two-phase blood flow in elastic microvessels accounting for the passive stresses, Biomechanics and Modeling in Mechanobiology, 2022. Crossref

  192. Sedighi F., Darijani H., Darijani F., A novel phenomenological viewpoint for transversely isotropic hyperelastic materials; a new strain energy density function, International Journal of Solids and Structures, 225, 2021. Crossref

  193. Borjalilou Vahid, Asghari Mohsen, Mathematical Modeling of Anisotropic Hyperelastic Cylindrical Thick Shells by Incorporating Thickness Deformation and Compressibility with Application to Arterial Walls, International Journal of Structural Stability and Dynamics, 22, 13, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain