Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.752 Facteur d'impact sur 5 ans: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019026816
pages 1609-1625


P. Signanini
University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
Giovanna Vessia
University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
V. Elia
University Federico II of Naples, Department of Chemistry, Naples, Italy
E. Napoli
University Federico II of Naples, Department of Chemistry, Naples, Italy
R. Germano
Promete s.r.l. CNR Spin-off, Piazzale V. Tecchio, 45, 80125, Naples, Italy


Metabrick is a patented material made up of cooked clay as in common bricks but modified in order to increase its porosity up to 65% and broaden its range of pore diameters (less than 0.3 nm to 0.2 mm). Such a material shows unconventional experimental evidences when it is saturated by demineralized water through capillary rise. The latter causes a temperature reduction within both the volume of the metabrick and the capillary water. In addition, when a sponge is inserted into the metabrick the capillary water is taken by the sponge and poured out as free water. If the temperature of the poured water is measured, it is 3°C−4°C lower than the ambient temperature. Furthermore, when the electric conductibility of both the demineralized water passing through the metabrick and the water taken from a sponge inserted into the metabrick is measured, it becomes evident that these waters show values 3 orders of magnitude greater than a common value for demineralized water (the measure is about 1500 μS). All the above-mentioned phenomena could be explained in light of the fourth phase of water applied to the capillary rise occurring in the metabrick. This statement is largely discussed throughout the paper.


  1. Butler, J.A.V., Electrical Phenomena at Interface, London: Methuen & Co., 1951.

  2. Casini, F., Fundamentals of the Hydromechanical Behavior of Multiphase Granular Materials, in New Frontiers in Oil and Gas Exploration, New York: Springer International Publishing, pp. 461-486, 2016.

  3. Chai, B., Mahtani, A.G., and Pollack, G.H., Unexpected Presence of Solute-Free Zones at Metal-Water Interfaces, Contemp. Mater., vol. 3, no. 1, pp. 1-12,2012.

  4. Elia, V., Ausanio, G., De Ninno, A., Gentile, F., Germano, R., Napoli, E., and Niccoli, M., Experimental Evidence of Stable Aggregates of Water at Room Temperature and Normal Pressure after Iterative Contact with a Nafion Polymer Membrane, Water J., vol. 5, pp. 16-26, 2013a.

  5. Elia, V., Napoli, E., and Niccoli, M., Physical-Chemical Study of Water in Contact with a Hydrophilic Polymer: Nafion, J. Therm. Anal. Calorim., vol. 112, pp. 937-944, 2013b.

  6. Elia, V., Ausanio, G., De Ninno, A., Germano, R., Napoli, E., and Niccoli, M., Experimental Evidences of Stable Water Nanostructures at Standard Pressure and Temperature Obtained by Iterative Filtration, Water J., vol. 5, pp. 121-130, 2014a.

  7. Elia, V., Lista, L., Napoli, E., and Niccoli, M., A Thermodynamic Characterization of Aqueous Nanostructures of Water Molecules Formed by Prolonged Contact with the Hydrophilic Polymer Nafion, J. Therm. Anal. Calorim., vol. 115, no. 2, pp. 1841-1849, 2014b.

  8. Elia, V., Yinnon, T.A., Oliva, R., Napoli, E., Germano, R., Bobba, F., and Amoresano, A., Chiral Micron-Sized H2O Aggregates in Water: Circular Dichroism of Supramolecular H2O Architectures Created by Perturbing Pure Water, Water J., vol. 8, pp. 1-29, 2017.

  9. Evans, L., The Advent of Mechanical Refrigeration Alters Daily Life and National Economies Throughout the World, Science and Its Times, Farmington Hills, MI: Gale Research, 2004.

  10. Fick, A., Ueber Diffusion, Ann. Phys., vol. 170, no. 1, pp. 59-86, 1855.

  11. Franks, F., Water: A Matrix of Life, 2nd Edition, Cambridge: RSC Paperbacks, 2000.

  12. Hall, C. and Hoff, W.D., Water Transport in Brick, Stone and Concrete, London/New York: Taylor & Francis, 2002.

  13. Karpun, Y., Konnov, N., Kuvaitsev, M., and Prokhorov, A., Active Condensation of the Atmospheric Moisture as a Self-Irrigation Mechanism for the Ground-Covering Plants, Hortus Botanicus, vol. 10, pp. 11-17, 2015.

  14. Kiinzel, H.M. and Kiessel, K., Calculation of Heat and Moisture Transfer in Exposed Building Components, Int. J. Heat Mass Transf., vol. 40, no. 1, pp. 159-167, 1997.

  15. Lerner,K.L. andLerner, B.W., Eds., UXL Encyclopedia of Water Science, USA: Thomson Gale, 2005.

  16. Massari, G. andMassari, I., Damp Buildings, Old and New, Rome: ICCROM, 1993. (English translation of "Risanamento Igienico dei Locali Umidi" Milan, Italy: Ulrico Hoepli, 1985).

  17. Mollier, R., EinNeues Diagram fur Dampfluftgemische, ZVDI, vol. 67, no. 9, 1923. DOI: 10.1007/978-3-642-92512-2.

  18. Pollack, G.H., The Fourth Phase of Water, Seattle: Ebner & Sons Publishers, 2013.

  19. Neiss, J., Numerische Simulation des Warme und Feuchtetransports und der Eisbildung in Boden (Numerical Simulation of Heat and Moisture Transport and Ice Formation in Soils), Diisseldorf: VDI-Verlang, 1982.

  20. Prokhorov, A., Active Condensation of Water by Plants, Principy Ekologii, vol. 2, no. 3, pp. 72-76, 2013.

  21. Riley, C., The Unique and Unusual Properties of Water, PDH Online Course C104 (2 PDH), pp. 1-10,2012.

  22. Roura, P., Thermodynamic Derivations of the Mechanical Equilibrium Conditions for Fluid Surfaces: Young's and Laplace's Equations, Amer. J. Phys., vol. 73, pp. 1139-1147, 2005.

  23. Roura, P., Contact Angle in Thick Capillaries: A Derivation based on Energy Balance, Euro. J. Phys., vol. 28, pp. L27-L32,2007.

  24. Signanini, P., De Santis, A., Di Fazio, M., Greco, P., Merla, A., Monosi, S., Piazza, F., Rainone, M.L., Fenzi, F., and Torrese, P., Unexpected Thermal Properties of Water Diffusion in Very Porous Materials, Water J., vol. 7, pp. 19-32, 2015.

  25. Xiao, Y., Yang, F., and Pitchumani, R., A Generalized Analysis of Capillary Flows in Channels, J. Colloid Interf. Sci., vol. 298, pp. 880-888, 2006.

  26. Young, W.B., Analysis of Capillary Flows in Non-Uniform Cross-Sectional Capillaries, Coll. Surf. A: Physicochem. Eng. Aspects, vol. 234, pp. 123-128, 2004.

  27. Yinnon, T.A., Elia, V., Napoli, E., Germano, R., and Liu, Z.-Q., Water Ordering Induced by Interfaces: An Experimental and Theoretical Study, Water J., vol. 7, pp. 96-128, 2016.

Articles with similar content:

Experimental Determination of Convective Heat Transfer Coefficients during Molten Aluminum Purification Using Open Cell Alumina (AL2O3) Ceramics
International Heat Transfer Conference 15, Vol.18, 2014, issue
Pitt Goetze, Ulrich Gross, Dig Vijay, Rhena Wulf, Klaus Eigenfeld, Eva Jaeckel
Experimental Evidence for Permeability Minima at Low-Velocity Gas Flow Through Naturally Formed Porous Media
Journal of Porous Media, Vol.1, 1998, issue 1
Federico F. Krause, Rudi Meyer
Measurement of Velocity and Temperature Distributions in a Highly Porous Medium
Journal of Porous Media, Vol.3, 2000, issue 3
Masaaki Okuyama, Yutaka Abe
Computational Thermal Sciences: An International Journal, Vol.2, 2010, issue 3
Hamid El Qarnia, Hamid Ait Adine
Ababacar Thiam, Vincent Sambou, Youssouf Mandiang, Dorothe Azilinon, Mamadou Adj