Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.752 Facteur d'impact sur 5 ans: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2020027274
pages 465-476

NON-NEWTONIAN FLOW IN DEFORMABLE POROUS MEDIA: MODELING AND SIMULATIONS OF COMPRESSION MOLDING PROCESSES

Umair Farooq
Department of Mathematics, Capital University of Science and Technology, Islamabad 44000, Pakistan
J. I. Siddique
Department of Mathematics, Penn State University- York Campus, York, Pennsylvania 17403-3326, USA

RÉSUMÉ

The aim of this study is to develop a mathematical model based on power law fluid using mixture theory. The resulting system is solved numerically and graphs are produced to highlight the unidirectional compression molding process. In this industrial process, a piston operates on the top of the pile to compress the preimpregnated layers. The moving domain problem is modeled using Eulerian coordinates, and then transformed to fixed domain using Lagrangian coordinates. The dynamics are controlled by velocity of piston or pressure applied on the piston. We find that there is a homogeneous increase in solid volume fraction for shear thickening fluid as compared to shear thinning fluid.

RÉFÉRENCES

  1. Ahmed, A., Siddique, J.I., and Mahmood, A., Non-Newtonian Flow-Induced Deformation from Pressurized Cavities in Absorbing Porous Tissues, Comput. Methods Biomech. Biomed. Eng., vol. 20, no. 13, pp. 1464-1473,2017.

  2. Ambrosi, D. and Preziosi, L., Modelling Matrix Injection through Elastic Porous Preforms, Compos. Part A: Appl. Sci. Manufact., vol. 29, nos. 1-2, pp. 5-18,1998.

  3. Anderson, D.M., Imbibition of a Liquid Droplet on a Deformable Porous Substrate, J. Phys. Fluids, vol. 17, no. 8, p. 087104, 2005.

  4. Andersson, H.I., Bech, K.H., andDandapat, B.S., Magnetohydrodynamic Flow of a Power-Law Fluid over a Stretching Sheet, Int. J. Non-Linear Mech, vol. 27, no. 6, pp. 929-936, 1992.

  5. Ateshian, G.A., On the Theory of Reactive Mixtures for Modeling Biological Growth, J. Biomech. Model. Mechanobiol., vol. 6, no. 6, pp. 423-445, 2007.

  6. Atkin, R.J. and Craine, R.E., Continuum Theories of Mixtures: Basic Theory and Historical Development, Quart. J. Mech. Appl. Math, vol. 29, no. 2, pp. 209-244, 1976.

  7. Barry, S.I. and Aldis, G.K., Comparison of Models for Flow Induced Deformation of Soft Biological Tissue, J. Biomech., vol. 23, no. 7, pp. 647-654, 1990.

  8. Barry, S.I., Parker, K.H., and Aldis, G.K., Fluid Flow over a Thin Deformable Porous Layer, J. Zeitschrift fur Angewandte Mathe- matik undPhysik ZAMP, vol. 42, no. 5, pp. 633-648, 1991.

  9. Biot, M.A., General Theory of Three-Dimensional Consolidation, J. Appl. Phys., vol. 12, no. 2, pp. 155-164,1941.

  10. Biot, M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, J. Appl. Phys., vol. 26, no. 2, pp. 182-185, 1955.

  11. Bowen, R.M., Theory of Mixtures, in Continuum Physics, A.C. Eringen, Ed., New York: Academic Press, pp. 1-127, 1976.

  12. Brouwer, W.D., Van Herpt, E.C.F.C., and Labordus, M., Vacuum Injection Moulding for Large Structural Applications, Compos. Part A: Appl. Sci. Manufact, vol. 34, no. 6, pp. 551-558, 2003.

  13. Chou, S.Y., Krauss, P.R., and Renstrom, P. J., Imprint Lithography with 25-Nanometer Resolution, J. Sci., vol. 272, no. 5258, pp. 85-87, 1996.

  14. Coussy, O., Poromechanics, New York: John Wiley & Sons, 2004.

  15. Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Paris: Victor Dalmont, 1856.

  16. Delker, T., Pengra, D.B., and Wong, P.Z., Interface Pinning and the Dynamics of Capillary Rise in Porous Media, Phys. Rev. Lett:., vol. 76, no. 16, p. 2902,1996.

  17. Evans, R.D., Hudson, C.S., and Greenlee, J.E., The Effect of an Immobile Liquid Saturation on the Non-Darcy Flow Coefficient in Porous Media, SPEProduct. Eng., vol. 2, no. 4, pp. 331-338, 1987.

  18. Farina, A., Cocito, P., and Boretto, G., Flow in Deformable Porous Media: Modelling and Simulations of Compression Moulding Processes, Math. Comput. Modell., vol. 26, no. 11, pp. 1-15, 1997.

  19. Farina, A. and Preziosi, L., Non-Isothermal Injection Molding with Resin Cure and Preform Deformability, Compos. Part A: Appl. Sci. Manufact, vol. 31, no. 12, pp. 1355-1372, 2000.

  20. Ghomashchi, M.R. and Vikhrov, A., Squeeze Casting: An Overview, J. Mater. Process. Technol., vol. 101, nos. 1-3, pp. 1-9,2000.

  21. Hatami, M. and Ganji, D.D., Heat Transfer and Flow Analysis for SA-TiO2 Non-Newtonian Nanofluid Passing through the Porous Media between Two Coaxial Cylinders, J. Mol. Liq., vol. 188, pp. 155-161, 2013.

  22. Huang, Z., Zhang, X., Yao, J., and Wu, Y., Non-Darcy Displacement by a Non-Newtonian Fluid in Porous Media According to the Barree-Conway Model, Adv. Geo-Energy Res., vol. 1, no. 2, pp. 74-85, 2017.

  23. Isayev, A., Injection and Compression Molding Fundamentals, Boca Raton, FL: CRC Press, 2012.

  24. Kim, Y.R., McCarthy, S.P., and Fanucci, J.P., Compressibility and Relaxation of Fiber Reinforcements during Composite Processing, Polymer Compos., vol. 12, no. 1, pp. 13-19, 1991.

  25. Lago, M. and Araujo, M., Capillary Rise in Porous Media, Physica A: Stat. Mech. Appl, vol. 289, nos. 1-2, pp. 1-17, 2001.

  26. Liu, K.F. and Mei, C.C., Slow Spreading of a Sheet of Bingham Fluid on an Inclined Plane, J. Fluid Mech., no. 207, pp. 505-529, 1989.

  27. Matsuhisa, S. and Bird, R.B., Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Fluid, AIChE J, vol. 11, no. 4, pp. 588-595, 1965.

  28. Pearson, J.R.A. and Tardy, P.M.J., Models for Flow of Non-Newtonian and Complex Fluids through Porous Media, J. Non-Newtonian Fluid Mech., vol. 102, no. 2, pp. 447-473,2002.

  29. Pezron, I., Bourgain, G., and Quere, D., Imbibition of a Fabric, J. ColloidInterf. Sci., vol. 173, no. 2, pp. 319-327, 1995.

  30. Siddique, J.I. and Anderson, D.M., Capillary Rise of a Non-Newtonian Liquid into a Deformable Porous Material, J. Porous Media, vol. 14, no. 12, pp. 1087-1102,2011.

  31. Siddique, J.I. and Kara, A., Capillary Rise of Magnetohydrodynamics Liquid into Deformable Porous Material, J. Appl. Fluid Mech., vol. 9, no. 6, pp. 2837-2843,2016.

  32. Siddique, J.I., Anderson, D.M., and Bondarev, A., Capillary Rise of a Liquid into a Deformable Porous Material, J. Phys. Fluids, vol. 21, no. 1, p. 013106,2009.

  33. Siddique, J.I., Ahmed, A., Aziz, A., and Khalique, C.M., A Review of Mixture Theory for Deformable Porous Media and Applications, J. Appl. Sci., vol. 7, no. 9, p. 917,2017.

  34. Sochi, T., Flow of Non-Newtonian Fluids in Porous Media, J. Polymer Sci. PartB: Polymer Phys., vol. 48, no. 23, pp. 2437-2767, 2010.

  35. Taklifi, A. and Aliabadi, A., Analytical Solution of Unsteady MHD Periodic Flow of a Non-Newtonian Fluid through a Porous Channel, J. Porous Media, vol. 15, no. 11, pp. 1051-1059, 2012.

  36. Terzaghi, K., Principles of Soil Mechanics, IV. Settlement and Consolidation of Clay, J. Eng. News-Record., vol. 95, no. 3, pp. 874-878, 1925.

  37. Tong, D. and Hu, H., Flow Analysis of Non-Newtonian Viscoelastic Fluids in Porous Media, J. Porous Media, vol. 13, no. 5, pp. 477-486,2010.

  38. Trochu, F., Gauvin, R., and Gao, D.M., Numerical Analysis of the Resin Transfer Molding Process by the Finite Element Method, Adv. Polymer Tech.: J. Polymer Process. Inst., vol. 12, no. 4, pp. 329-342, 1993.

  39. Uscilowska, A., Non-Newtonian Fluid Flow in a Porous Medium, J. Mech. Mater. Struct., vol. 3, no. 6, pp. 1151-1159,2008.

  40. Wei, H., Chen, J.S., and Hillman, M., A Stabilized Nodally Integrated Meshfree Formulation for Fully Coupled Hydro-Mechanical Analysis of Fluid-Saturated Porous Media, J. Comput. Fluids, vol. 141, pp. 105-115, 2016.

  41. Yi, A.Y. and Jain, A., Compression Molding of Aspherical Glass Lenses-A Combined Experimental and Numerical Analysis, J. Am. Ceramic Soc., vol. 88, no. 3, pp. 579-586, 2005.


Articles with similar content:

STOCHASTIC CONSOLIDATION OF MULTILAYERED SOIL WITH RANDOM HEIGHT
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 4
M'hammed Badaoui
Interactions between Rigid Particles
International Journal of Fluid Mechanics Research, Vol.40, 2013, issue 2
Samireh Vahid
STEADY FLOW OF JOHNSON-SEGALMAN FLUID THROUGH POROUS MEDIUM OVER AN INCLINED PLATE
Journal of Porous Media, Vol.22, 2019, issue 5
Zainal Abdul Aziz, Faisal Rasheed, Shaymaa Mustafa, Fawzia Mansour Elniel, Arifah Bahar
LARGE-SCALE ANALYSIS OF INTERACTIVE BEHAVIORS OF BUBBLES AND PARTICLES IN A LIQUID BY A COUPLED IMMERSED BOUNDARY AND VOF TECHNIQUE
Multiphase Science and Technology, Vol.22, 2010, issue 3
Shintaro Takeuchi, Ryuichi Iwata, Takeo Kajishima
VORTICITY, STRAIN AND LARGE SCALE STATISTICS AS A FUNCTION OF THE SHEAR PARAMETER AND REYNOLDS NUMBER IN HOMOGENEOUS TURBULENT SHEAR FLOW
TSFP DIGITAL LIBRARY ONLINE, Vol.5, 2007, issue
Juan C. Isaza, Lance R. Collins