Abonnement à la biblothèque: Guest

MASS TRANSPIRATION IN MAGNETO-HYDRODYNAMIC BOUNDARY LAYER FLOW OVER A SUPERLINEAR STRETCHING SHEET EMBEDDED IN POROUS MEDIUM WITH SLIP

Volume 22, Numéro 8, 2019, pp. 1015-1025
DOI: 10.1615/JPorMedia.2019025664
Get accessGet access

RÉSUMÉ

We have studied mass transpiration of a magneto-hydrodynamic (MHD) flow of a Newtonian fluid over a superlinear stretching sheet embedded in a porous medium. A model was created of a nonlinear system of partial differential equations that are transformed into third-order nonlinear ordinary differential equations via similarity transformations and then solved analytically using differential transform method and Pade approximants. The main focus of the present study is on the effect of Navier's slip boundary condition on flow behavior. A comprehensive study is presented on the effects of various parameters, such as Navier's slip condition, mass transpiration (suction/injection), and Darcy number on the axial and transverse velocity profiles of the laminar boundary layer flow through the stretching sheet.

RÉFÉRENCES
  1. Ali, M.E., On Thermal Boundary Layer on a Power-Law Stretched Surface with Suction or Injection, Int. J. Heat Fluid Flow, vol. 16, pp. 280-290, 1995.

  2. Andersson, H.I., Slip Flow past a Stretching Surface, Acta Mech., vol. 158, pp. 121-125, 2002.

  3. Ariel, P.D., Hayat, T., and Asghar, S., The Flow of an Elastic-Viscous Fluid past a Stretching Sheet with Partial Slip, Acta Mech, vol. 187, pp. 29-35, 2006.

  4. Baker, G.A. and Morris, P.R.G., Pade Approximants: Basic Theory, New York: Addison-Wesley Publishing Company, 1981.

  5. Banks, W.H.H., Similarity Solutions of the Boundary Layer Equations for a Stretching Wall, J. Mech. Theor. Appl., vol. 2, pp. 375-392, 1983.

  6. Bervillier, C., Status of the Differential Transformation Method, Appl. Math. Comput, vol. 218, pp. 10158-10170, 2012.

  7. Blasius, H., Grenzschichten in Fliissigkeiten mit Kleiner Reibung, Zeits. f. Math. U. Phys., vol. 56, pp. 1-37, 1908.

  8. Chaim, T.C., Magnetohydrodynamic Heat Transfer over a Non-Isothermal Stretching Sheet, Acta Mech., vol. 122, pp. 169-179, 1997.

  9. Chen, C.K. and Char, M.I., Heat Transfer of a Continuous, Stretching Surface with Suction or Blowing, J. Math. Anal. Appl., vol. 135, pp. 568-580, 1988.

  10. Crane, L.J., Flow past a Stretching Plate, Zeits. f. Math. u. Phys., vol. 21, pp. 645-647, 1970.

  11. El-Dabe, N.T., Ghaly, A.Y., Rizkallah, R.R., Ewis, K.M., and Al-Bareda, A.S., Numerical Solution of MHD Boundary Layer Flow of Non-Newtonian Casson Fluid on a Moving Wedge with Heat and Mass Transfer and Induced Magnetic Field, J. Appl. Math. Phys, vol. 3, pp. 649-663,2015.

  12. Fisher, B.G., Extrusion of Plastics, London: Newnes-Butterworld, 1976.

  13. Gad-el-Hak, M., The Fluid Mechanics of Microdevices, ASMEJ. Fluids Eng., vol. 121, pp. 5-33,1999.

  14. Gupta, P.S. and Gupta, A.S., Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing, Can. J. Chem. Eng., vol. 55, pp. 744-746, 1977.

  15. Hamad, M.A.A., Analytical Solution of Natural Convection Flow of a Nanofluid over a Linearly Stretching Sheet in the Presence of Magnetic Field, Int. Commun. Heat Mass Transf., vol. 38, pp. 487-492, 2011.

  16. Ingham, D.B. and Pop, I., Transport in Porous Media, Oxford: Pergamon, 2002.

  17. Kaviany, M., Principles ofHeat Transfer in Porous Media, New York: Springer, 1991.

  18. Kumar Ranjith, S., Patnaik, B.S.V., and Vedanta, S., No-Slip Boundary Condition in Finite-Size Dissipative Particle Dynamics, J. Comput. Phys, vol. 232, no. 1, pp. 174-188, 2013.

  19. Magyari, E. and Keller, B., Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface, J Phys. D: Appl. Phys.., vol. 32, pp. 577-585, 1999.

  20. Mahabaleshwar, U.S., Effect of Partial Slip Viscous Flow over a Stretching Sheet with Suction/Injection in a Porous Medium, in Porous Media, New York: NOVA Science Publishers, pp. 165-179,2016.

  21. Mahabaleshwar, U.S., Nagaraju, K.R., Vinay Kumar, P.N., Baleanu, D., and Lorenzini, G., An Exact Analytical Solution of the Unsteady Magnetohydrodynamics Nonlinear Dynamics of Laminar Boundary Layer due to an Impulsively Linear Stretching Sheet, Continuum Mech. Therm., vol. 29, no. 2, pp. 559-567, 2017.

  22. Navier, C.L.M.H., Memoiresur les Lois du Mouvement des Fluids, Mem. Acad. R. Sci. Inst. France, vol. 6, pp. 389-440, 1823.

  23. Nield, D.A. and Bejan, A., Convection in Porous Media, 4th Edition, New York: Springer, 2013.

  24. Pavlov, K.B., Magnetohydrodynamic Flow of an Incompressible Viscous Liquid Caused by Deformation of Plane Surface, Magnitnaya Gidrodinamica, vol. 4, pp. 146-147, 1974.

  25. Pop, I. and Cheng, P., Flow past a Circular Cylinder Embedded in a Porous Medium based on the Brinkman Model, Int. J. Eng. Sci, vol. 30, pp. 257-262, 1992.

  26. Pop, I. and Ingham, D.B., Flow past a Sphere Embedded in a Porous Medium based on the Brinkman Model, Int. Commun. Heat Mass Transf., vol. 23, pp. 865-874, 1996.

  27. Rashidi, M.M., Differential Transform Method for MHD Boundary-Layer Equations: Combination of the DTM and the Pade Approximant, Int. Conf. on Signal Processing Systems, Singapore, 2009.

  28. Sakiadis, B.C., Boundary Layer Behaviour on Continuous Solid Surfaces: I. Boundary Layer Equations for Two Dimensional and Axisymmetric Flow, AIChE J., vol. 7, pp. 26-28, 1961a.

  29. Sakiadis, B.C., Boundary Layer Behaviour on Continuous Solid Surfaces: II. Boundary Layer Behaviour on Continuous Flat Surfaces, AIChE J., vol. 7, pp. 221-225, 1961b.

  30. Siddheshwar, P.G., Chan, A., and Mahabaleshwar, U.S., Suction-Induced Magnetohydrodynamics of a Viscoelastic Fluid over a Stretching Surface within a Porous Medium, IMA J. Appl. Math., vol. 79, no. 3, pp. 445-458, 2014.

  31. Turkyilmazoglu, M., Effects of Partial Slip on the Analytic Heat and Mass Transfer for the Incompressible Viscous Fluid of a Porous Rotating Disk Flow, J. Heat Transf., vol. 133, pp. 122602-122605, 2011a.

  32. Turkyilmazoglu, M., Multiple Solutions of Heat and Mass Transfer of MHD Slip Flow for the Viscoelastic Fluid over a Stretching Sheet, Int. J. Therm. Sci., vol. 50,no. 11, pp. 2264-2276, 2011b.

  33. Urquiza, J.M., Garon, A., and Farinas, M.I., Weak Imposition of the Slip Boundary Condition on Curved Boundaries for Stokes Flow, J. Comput. Phys, vol. 256, pp. 748-767,2014.

  34. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, pp. 195-203, 1981.

  35. Verhaeghe, F., Luo, L., and Blanpain, B., Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime, J. Comput. Phys, vol. 228, no. 1, pp. 147-157, 2009.

  36. Wang, C.Y., Flow due to a Stretching Boundary with Partial Slip - An Exact Solution oftheNavier-Stokes Equations, Chem. Eng. Sci., vol. 57, no. 17, pp. 3745-3747, 2002.

  37. Wang, C.Y., Darcy-Brinkman Flow with Solid Inclusions, Chem. Eng. Commun, vol. 197, pp. 261-274, 2010.

  38. Zhou, J.K., Differential Transformation and its Application for Electrical Circuits, China: Huazhong University Press, 1986.

CITÉ PAR
  1. Anusha T., Huang Huang-Nan, Mahabaleshwar U.S., Two dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation, Journal of the Taiwan Institute of Chemical Engineers, 127, 2021. Crossref

  2. Anusha Thippeswamy, Mahesh Rudraiah, Mahabaleshwar Ulavathi Shettar, Laroze David, An MHD Marangoni Boundary Layer Flow and Heat Transfer with Mass Transpiration and Radiation: An Analytical Study, Applied Sciences, 12, 15, 2022. Crossref

  3. Nagaraju K. R. , Mahabaleshwar U.S. , Siddalingaprasad M. , Sheikhnejad Yahya, DIFFUSION OF CHEMICAL REACTIVE SPECIES IN NON-NEWTONIAN LIQUID DUE TO A POROUS STRETCHING/SHRINKING SHEET: BRINKMANN MODEL , Journal of Porous Media, 25, 8, 2022. Crossref

  4. Mahabaleshwar U.S., Aly Emad H., Anusha T., MHD slip flow of a Casson hybrid nanofluid over a stretching/shrinking sheet with thermal radiation, Chinese Journal of Physics, 2022. Crossref

Prochains articles

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain