Abonnement à la biblothèque: Guest

THE PULSE DESCRIPTORS IN SENSITIVITY STUDIES OF NO-SORPTION AND SINGLE-SORPTION COLUMN TRANSPORT MODELS

Volume 22, Numéro 5, 2019, pp. 563-582
DOI: 10.1615/JPorMedia.2019028912
Get accessGet access

RÉSUMÉ

Data to the models of the migration of pollutants in aquifers are obtained primarily through laboratory column tests. One of the tools to support column experiment planning and interpretation is sensitivity analysis. The sensitivity analysis facilitates identifying the output-input relationship of particular models, which, in the case of column tests, involves determining the dependence of the shape of a tracer breakthrough curve on the modeled processes and the introduced transport and sorption parameter values. This article presents a sensitivity analysis for a conservative tracer, which is subject to advection, diffusion, and dispersion processes, and for a reactive (nonconservative) tracer, which is additionally subject to equilibrium or nonequilibrium sorption processes (i.e., the single sorption models). The study introduces a set of pulse descriptors (indicators) that enable a quantitative comparison of the influence of various transport and sorption parameters' values on the breakthrough curve shape. The authors propose an algorithm, based on descriptors, for selecting a sorption model appropriate for results of column tests. The article also contains the specification of migration parameter values obtained from a literature review of related selected theoretical and laboratory research. The sensitivity analysis conducted allowed the authors to (1) identify parameters and processes with the most significant influence on the breakthrough curve shape, (2) identify models that enable a depiction of the reactive tracer's incomplete recovery, and (3) select the models in which the tail-form asymmetry of the breakthrough curve shape is most visible.

RÉFÉRENCES
  1. Ahmed, M.J., Mohammed, A.H.A.K., and Kadhum, A.A.H., Modeling of Breakthrough Curves for Adsorption of Propane, NButane, and Iso-Butane Mixture on 5A Molecular Sieve Zeolite, Transp. Porous Med., vol. 86, no. 1, pp. 215–228, 2011. DOI: 10.1007/s11242-010-9617-5

  2. Appelo, C.A.J. and Postma, D., Geochemistry, Groundwater and Pollution, Leiden, The Netherlands: A.A. Balkema, 1999.

  3. Barrow, N.J., The Description of Phosphate Adsorption Curves, J. Soil Sci., vol. 29, no. 4, pp. 447–462, 1978. DOI: 10.1111/j.1365- 2389.1978.tb00794.x

  4. Cameron, D.R. and Klute, A., Convective Dispersive Solute Transport with a Combined Equilibrium and Kinetic Adsorption Model, Water Resour. Res., vol. 13, no. 1, pp. 183–188, 1977. DOI: 10.1029/WR013i001p00183

  5. Crooks, V.E. and Quigley, R.M., Saline Leachate through Clay: A Comparative Laboratory and Field Investigation, Can. Geotech. J., vol. 21, no. 2, pp. 349–362, 1984. DOI: 10.1139/t84-035

  6. Cunningham, J.A. and Roberts, P.V., Use of Temporal Moments to Investigate the Effects of Nonuniform Grain-Size Distribution on the Transport of Sorbing Solutes, Water Resour. Res., vol. 34, no. 6, pp. 1415–1425, 1998. DOI: 10.1029/98WR00702

  7. Dai, Z., Wolfsberg, A., Reimus, P., Deng, H., Kwicklis, E., Ding, M., Ware, D., and Ye, M., Identification of Sorption Processes and Parameters for Radionuclide Transport in Fractured Rock, J. Hydrol., vols. 414–415, pp. 220–230, 2012. DOI: 10.1016/j.jhydrol.2011.10.035

  8. Deurer, M., Vogeler, I., Clothier, B.E., and Scotter, D.R., Magnetic Resonance Imaging of Hydrodynamic Dispersion in a Saturated Porous Medium, Transp. Porous Med., vol. 54, no. 2, pp. 145–166, 2004. DOI: 10.1023/A:1026358431442

  9. Domenico, P.A. and Schwartz, F.W., Physical and Chemical Hydrogeology, New York: John Wiley & Sons, 1998.

  10. Dubus, I.G., Brown, C.D., and Beulke, S., Sensitivity Analyses for Four Pesticide Leaching Models, Pest Manag. Sci., vol. 59, no. 9, pp. 962–982, 2003. DOI: 10.1002/ps.723

  11. Fohrmann, G., Maloszewski, P., and Seiler, K.P., Experimental Determination of the Copper & Antimony Mobility in Calcareous and Non-Calcareous Aquifer Sediments in Columns and 1-D Reactive Transport Modelling, in New Approaches to Characterizing Groundwater Flow, K.P. Seiler and S. Wohnlich, Eds., Lisse.

  12. Fox, P.J. and Lee, J., Model for Consolidation-Induced Solute Transport with Nonlinear and Nonequilibrium Sorption, Int. J. Geomech., vol. 8, no. 3, pp. 188–198, 2008. DOI: 10.1061/(ASCE)1532-3641(2008)8:3(188)

  13. Govindaraju, R.S. and Das, B.S., Moment Analysis for Subsurface Hydrologic Applications, Dordrecht, The Netherlands: Springer, accessed January, 2017, from https://link.springer.com/book/10.1007%2F978-1-4020-5752-6, 2007.

  14. Huang, S., Zhang, R.D., Zhang, J.Y., and Pan, R., Effects of pH and Soil Texture on the Adsorption and Transport of Cd in Soils, Sci. China Ser. E-Tech. Sci., vol. 52, no. 11, pp. 3293–3299, 2009. DOI: 10.1007/s11431-009-0348-1

  15. Jacques, J., Lavergne, C., and Devictor, N., Sensitivity Analysis in Presence of Model Uncertainty and Correlated Inputs, Reliab. Eng. Syst. Safe., vol. 91, nos. 10-11, pp. 1126–1134, 2006. DOI: 10.1016/j.ress.2005.11.047

  16. Jaiswal, S., Chopra, M., and Das, S., Numerical Solution of a Space Fractional Order Solute Transport System, J. Porous Media, vol. 21, no. 2, pp. 145–160, 2018. DOI: 10.1615/JPorMedia.v21.i2.30

  17. Kaczmarek, M. and Kazimierska-Drobny, K., Simulation of Reactive Materials in Column and Reservoir Tests. Sensitivity Analysis for a Linear Coupled Model, Comput. Geotech., vol. 34, no. 4, pp. 247–253, 2007a. DOI: 10.1016/j.compgeo.2007.02.010

  18. Kaczmarek, M. and Kazimierska-Drobny, K., Estimation-Identification Problem for Diffusive Transport in Porous Materials based on Single Reservoir Test: Results for Silica Hydrogel, J. Colloid Interface Sci., vol. 311, no. 1, pp. 262–275, 2007b. DOI: 10.1016/j.jcis.2007.02.054

  19. Khan, A.A., Muthukrishnan, M., and Guha, B.K., Sorption and Transport Modeling of Hexavalent Chromium on Soil Media, J. Hazard. Mater., vol. 174, nos. 1-3, pp. 444–454, 2010. DOI: 10.1016/j.jhazmat.2009.09.073

  20. Klotz, D., Maloszewski, P., and Moser, H., Mathematical Modeling of Radioactive Tracer Migration in Water Flowing through Saturated Porous Media, Radiochim. Acta, vols. 44–45, no. 2, pp. 373–379, 1988. DOI: 10.1524/ract.1988.4445.2.373

  21. Kret, E., Kiecak, A., Malina, G., Nijenhuis, I., and Postawa, A., Identification of TCE and PCE Sorption and Biodegradation Parameters in a Sandy Aquifer for Fate and Transport Modelling: Batch and Column Studies, Environ. Sci. Pollut. Res., vol. 22, no. 13, pp. 9877–9888, 2015. DOI: 10.1007/s11356-015-4156-9

  22. Latrille, C. and Zoia, A., Estimating Apparent Diffusion Coefficient and Tortuosity in Packed Sand Columns by Tracers Experiments, J. Porous Media, vol. 14, no. 6, pp. 507–520, 2011. DOI: 10.1615/JPorMedia.v14.i6.40

  23. Leite, A.L., Paraguassu, A.B., and Zuquette, L.V., K+ and Cl- Diffusion in Compacted Tropical Soils: A Liner Usage Perspective, Engineering Geology and the Environment; Construction Materials, Proc. 8th Inter. IAEG Congress, Vancouver, vol. 4, pp. 2505–2512, 1998.

  24. Liedl, R. and Ptak, T., Modelling of Diffusion-Limited Retardation of Contaminants in Hydraulically and Lithologically Nonuniform Media, J. Contam. Hydrol., vol. 66, nos. 3-4, pp. 239–259, 2003. DOI: 10.1016/S0169-7722(03)00028-7

  25. Liu, K.-H., Enfield, C.G., and Mravik, S.C., Evaluation of Sorption Models in the Simulation of Naphthalene Transport through Saturated Soils, Groundwater, vol. 29, no. 5, pp. 685–692, 1991. DOI: 10.1111/j.1745-6584.1991.tb00560.x

  26. Małecki, J.J., Ed., Determination of Contaminant Migration Parameters in a Porous Medium for Hydrogeological and Environmental Protection Research: Methodological Guide, Warszawa: Uniwersytet Warszawski, Wydział Geologii, 2006 (in Polish).

  27. Maraqa, M.A., Retardation of Nonlinearly Sorbed Solutes in Porous Media, J. Environ. Eng., vol. 133, no. 12, pp. 587–594, 2007. DOI: 10.1061/(ASCE)0733-9372(2007)133:12(1080)

  28. Maraqa, M.A. and Khashan, S.A., Modeling Solute Transport Affected by Heterogeneous Sorption Kinetics using Single-Rate Nonequilibrium Approaches, J. Contam. Hydrol., vol. 157, pp. 73–86, 2014. DOI: 10.1016/j.jconhyd.2013.11.005

  29. Marciniak, M., Kaczmarek, M., Okonska, M., and Kazimierska-Drobny, K., The Identification of Hydrogeological Parameters on the Basis of a Numerical Simulation of a Breakthrough Curve and Optimization Methods, Poznan: Bogucki Wyd. Naukowe, 2009 (in Polish).

  30. Marciniak, M. and Okonska, M., The Identification of Hydrogeological Parameters on the Basis of the Column Experiment Modelling, From Data Gathering and Groundwater Modelling to Integrated Management, Hidrogeologia y Aguas Subterraneas, Madrid, vol. 21, pp. 421–427, 2006.

  31. Marciniak, M., Oko´nska, M., Kaczmarek, M., and Kazimierska-Drobny, K., The Sensitivity Test for a Breakthrough Curve Recorded during Tracer Migration in a Filtration Column, Biuletyn PIG, vol. 456, accessed January, 2014 (in Polish), from https://biuletynpig.pl/resources/html/article/details?id=45614, 2013.

  32. Mieszkowski, R., Diffusion of Lead Ions Trough the Poznan Clay (Neogene) and through Glacial Clay, Geol. Quart., vol. 47, accessed January, 2017, from https://gq.pgi.gov.pl/article/view/7301, 2003.

  33. Montillet, A., Khalifa, A.O.A., and Sabiri, N.-E., Liquid Flow through Sands: Reliability of Tortuosity Measured from Electrical Conductivity and the Importance of Evaluating Effective Porosity, J. Porous Media, vol. 19, no. 6, pp. 527–537, 2016. DOI: 10.1615/JPorMedia.v19.i6.40

  34. Neville, C.J., Ibaraki, M., and Sudicky, E.A., Solute Transport with Multiprocess Nonequilibrium: A Semi-Analytical Solution Approach, J. Contam. Hydrol., vol. 44, no. 2, pp. 141–159, 2000. DOI: 10.1016/S0169-7722(00)00094-2

  35. Raoof, A. and Hassanizadeh, S.M., Upscaling Transport of Adsorbing Solutes in Porous Media, J. Porous Media, vol. 13, no. 5, pp. 395–408, 2010. DOI: 10.1615/JPorMedia.v13.i5.10

  36. Roehl, K.E. and Czurda, K., Diffusion and Solid Speciation of Cd and Pb in Clay Liners, Appl. Clay Sci., vol. 12, no. 5, pp. 387–402, 1998. DOI: 10.1016/S0169-1317(97)00022-7

  37. Selvaraju, N. and Pushpavanam, S., Adsorption Characteristics on Sand and Brick Beds, Chem. Eng. J., vol. 147, nos. 2-3, pp. 130–138, 2009. DOI: 10.1016/j.cej.2008.06.040

  38. Shackelford, C. and Daniel, D.E., Diffusion in Saturated Soil. II: Results for Compacted Clay, J. Geotech. Eng., vol. 117, no. 3, pp. 485–506, 1991. DOI: 10.1061/(ASCE)0733-9410(1991)117:3(485)

  39. Sieczka, A. and Koda, E., Kinetic and Equilibrium Studies of Sorption of Ammonium in the Soil-Water Environment in Agricultural Areas of Central Poland, Appl. Sci., vol. 6, no. 10, p. 269, 2016. DOI: 10.3390/app6100269

  40. Singha, K., Li, L., Day-Lewis, F.D., and Regberg, A.B., Quantifying Solute Transport Processes: Are Chemically “Conservative” Tracers Electrically Conservative?, Geophysics, vol. 76, no. 1, pp. F53–F63, 2011. DOI: 10.1190/1.3511356

  41. Sternberg, S.P.K., Dispersion Measurements in Highly Heterogeneous Laboratory Scale Porous Media, Transp. Porous Med., vol. 54, no. 1, pp. 107–124, 2004. DOI: 10.1023/A:1025708313812

  42. Treumann, S., Torkzaban, S., Bradford, S.A., Visalakshan, R.M., and Page, D., An Explanation for Differences in the Process of Colloid Adsorption in Batch and Column Studies, J. Contam. Hydrol., vol. 164, pp. 219–229, 2014. DOI: 10.1016/j.jconhyd.2014.06.007

  43. Van de Weerd, H., Leijnse, A., and van Riemsdijk, W.H., Transport of Reactive Colloids and Contaminants in Groundwater: Effect of Nonlinear Kinetic Interactions, J. Contam. Hydrol., vol. 32, nos. 3-4, pp. 313–331, 1998. DOI: 10.1016/S0169- 7722(98)00052-7

  44. Van Genuchten, M. and Wierenga, P.J., Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions, Soil Sci. Soc. Am. J., vol. 40, no. 4, pp. 473–480, 1976. DOI: 10.2136/sssaj1976.03615995004000040011x

  45. Warwick, P.W., Hall, A., Pashley, V., Bryan, N.D., and Griffin, D., Modelling the Effect of Humic Substances on the Transport of Europium through Porous Media: A Comparison of Equilibrium and Equilibrium/Kinetic Models, J. Contam. Hydrol., vol. 42, no. 1, pp. 19–34, 2000. DOI: 10.1016/S0169-7722(99)00084-4

  46. Weber, W.J. Jr., McGinley, P.M., and Katz, L.E., Sorption Phenomena in Subsurface Systems: Concepts, Models and Effects on Contaminant Fate and Transport, Water Res., vol. 25, no. 5, pp. 499–528, 1991. DOI: 10.1016/0043-1354(91)90125-A

  47. Wehrhan, A., Kasteel, R., Simunek, J., Groeneweg, J., and Vereecken, H., Transport of Sulfadiazine in Soil Columns - Experiments and Modelling Approaches, J. Contam. Hydrol., vol. 89, nos. 1-2, pp. 107–135, 2007. DOI: 10.1016/j.jconhyd.2006.08.002

  48. Wolt, J., Singh, P., Cryer, S., and Lin, J., Sensitivity Analysis for Validating Expert Opinion as to Ideal Data Set Criteria for Transport Modeling, Environ. Toxicol. Chem., vol. 21, no. 8, pp. 1558–1565, 2002. DOI: 10.1002/etc.5620210805

CITÉ PAR
  1. Marciniak Marek, Okońska Monika, Kaczmarek Mariusz, Preselection of a sorption model based on a column test: the algorithm and an example of its application, Hydrogeology Journal, 29, 4, 2021. Crossref

  2. Pietrzak Damian, Modeling migration of organic pollutants in groundwater — Review of available software, Environmental Modelling & Software, 144, 2021. Crossref

  3. Okońska Monika, Marciniak Marek, Zembrzuska Joanna, Kaczmarek Mariusz, Laboratory investigations of diclofenac migration in saturated porous media – a case study, Geologos, 25, 3, 2019. Crossref

  4. Pietrzak Damian, Kania Jarosław, Kmiecik Ewa, Wątor Katarzyna, Identification of transport parameters of chlorides in different soils on the basis of column studies, Geologos, 25, 3, 2019. Crossref

Prochains articles

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain